Decoding employee attrition: a unified approach with XAI and AHP

dc.conference.date16 - 21 Jul 2024
dc.conference.placeUniversidad Complutense de Madrid
dc.conference.titleProceedings of the 16th FLINS conference on computational intelligence in decision and control & the 19th ISKE conference on intelligence systems and knowledge engineering (FLINS-ISKE 2024)
dc.contributor.authorMarín Díaz, Gabriel
dc.contributor.authorGalán Hernández, José Javier
dc.contributor.editorKerre, Etienne E.
dc.contributor.editorLu, Jie
dc.contributor.editorMartínez, Luis
dc.contributor.editorLi, Tianrui
dc.contributor.editorMontero, Javier
dc.contributor.editorFlores-Vidal, Pablo
dc.date.accessioned2026-01-12T15:36:03Z
dc.date.available2026-01-12T15:36:03Z
dc.date.issued2024-07-21
dc.description.abstractIn the face of escalating employee attrition challenges, organizations are increasingly relying on artificial intelligence (AI) to predict and address turnover. This chapter explores the application of explainable AI (XAI) to identify potential employee turnover, analyzing its impact on organizational productivity and stability. The second section focuses on AI techniques that leverage historical data to forecast attrition, enabling proactive interventions. The third part introduces XAI to enhance model transparency, providing HR professionals with deeper insights to develop targeted retention strategies aligned with individual employee needs. Integrating the Analytic Hierarchy Process (AHP) model becomes imperative to assign weights to criteria identified by AI as significant. This incorporation aims to introduce the human factor into decision-making.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipSIN FINANCIACIÓN
dc.description.statuspub
dc.identifier.citationDíaz Marín, G., & Galán Hernández, J. J. Decoding Employee Attrition: A Unified Approach with XAI and AHP. In Intelligent Management of Data and Information in Decision Making (pp. 367–375). https://doi.org/10.1142/9789811294631_0046
dc.identifier.doi10.1142/13882
dc.identifier.issn2972-4465
dc.identifier.officialurlhttps://www.worldscientific.com/worldscibooks/10.1142/13882
dc.identifier.relatedurlhttps://www.worldscientific.com/doi/10.1142/9789811294631_0046
dc.identifier.urihttps://hdl.handle.net/20.500.14352/129925
dc.language.isoeng
dc.page.final375
dc.page.initial367
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004.8
dc.subject.cdu519.226
dc.subject.cdu303.4
dc.subject.cdu004.6
dc.subject.cdu331
dc.subject.keywordXAI
dc.subject.keywordartificial intelligence
dc.subject.keywordAHP
dc.subject.keywordhuman resources
dc.subject.keywordtalent attraction
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmTécnicas de Investigación Social
dc.subject.ucmTeoría de la decisión
dc.subject.ucmTrabajo
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1209.04 Teoría y Proceso de decisión
dc.subject.unesco5311.04 Organización de Recursos Humanos
dc.subject.unesco1209.03 Análisis de Datos
dc.titleDecoding employee attrition: a unified approach with XAI and AHP
dc.typeconference paper
dc.type.hasVersionAM
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FLINS-ISKE_2024_paper_60.pdf
Size:
193.83 KB
Format:
Adobe Portable Document Format