Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Giant diamagnetism of gold nanorods

dc.contributor.authorHernando Grande, Antonio
dc.contributor.authorAyuela, A.
dc.contributor.authorCrespo del Arco, Patricia
dc.contributor.authorEchenique, P. M.
dc.date.accessioned2023-06-19T13:31:21Z
dc.date.available2023-06-19T13:31:21Z
dc.date.issued2014
dc.description© 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We gratefully acknowledge financial support from the Spanish Ministerio de innovación, Ciencia y Tecnología (grant numbers MAT2012-37109-C02-01 and FIS2010-21282-C02-02), the University of the Basque Country (grant no. IT-366-07), the Basque Government through the NANOMATERIALS project (grant IE05-151) under the ETORTEK Program (iNanogune). AH acknowledges to Dr J M Rojo helpful comments on gold surfaces.
dc.description.abstractThe presence of giant diamagnetism in Au nanorods, NRs, is shown to be a possible consequence of field induced currents in the surface electrons. The distance, Δ, between quantum surface energy levels has been calculated as a function of the NRs radius. Note that those electrons occupying states for which Δ > k_BT are steadily orbiting with constant orbital moment. The diamagnetic response induced when a field is turned on remains constant during the time the field is acting. As the NRs radius increases, Δ decreases and accordingly the electron fraction available to generate constant currents decreases, consequently the surface diamagnetic susceptibility decreases towards its bulk value. The surface electronic motion induced by the axial applied field on electrons con- fined into a cylindrical surface accounts with extremely good quantitative agreement for the giant diamagnetism recently measured and reported
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministerio de Innovación, Ciencia y Tecnología
dc.description.sponsorshipUniversity of the Basque Country
dc.description.sponsorshipBasque Government through the NANOMATERIALS
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29290
dc.identifier.doi10.1088/1367-2630/16/7/073043
dc.identifier.issn1367-2630
dc.identifier.officialurlhttp://dx.doi.org/ 10.1088/1367-2630/16/7/073043
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33929
dc.journal.titleNew journal of physics
dc.language.isoeng
dc.page.initial73043
dc.publisherIOP Publishing
dc.relation.projectIDMAT2012-37109-C02-01
dc.relation.projectIDFIS2010-21282-C02-02
dc.relation.projectIDIT-366-07
dc.relation.projectIDIE05-151
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu538.9
dc.subject.keywordGiant diamagnetism
dc.subject.keywordGold nanorods
dc.subject.keywordOrbital magnetism
dc.subject.ucmFísica de materiales
dc.titleGiant diamagnetism of gold nanorods
dc.typejournal article
dc.volume.number16
dcterms.references[1] Yamamoto Y, Miura T, Suzuki M, Kawamura N, Miyagawa H, Nakamura T, Kobayashi K, Ternishi T and Hori H 2004 Direct observation of ferromagnetic spin polarization in gold nanoparticles Phys. Rev. Lett. 93 116801 [2] Crespo P, Litrán R, Rojas T C, Multigner M, de la Fuente J M, Sánchez-López J C, García M A, Hernando A, Penadés S and Fernández A 2004 Permanent magnetism, magnetic anisotropy and hysteresis of thiolcapped gold nanoparticles Phys. Rev. Lett. 93 087204 [3] Hernando A, Crespo P and García M A 2006 Origin of orbital ferromagnetism and giant magnetic anisotropy at the nanoscale Phys. Rev. Lett. 96 057206 [4] Bartolomé J et al 2012 Strong paramagnetism of gold nanoparticles deposited on a sulfolobus acidocaldarius S layer Phys. Rev. Lett. 109 247203 [5] Garitaonandia J S et al 2008 Chemically induced permanent magnetism in Au, Ag and Cu nanoparticles: localization of the magnetism by element selective techniques Nano Lett. 8 661 [6] Gréget R et al 2012 Magnetic properties of gold nanoparticles: a room temperature quantum effect Chem. Phys. Chem. 13 3092–7 [7] Suda M, Kameyama N, Suzuki M, Kawamura N and Einaga Y 2008 Reversible photo-switching of ferromagnetic FePt nanoparticles at room temperature Angew. Chem. Int. Ed. Engl. 47 160 [8] Nealon G L, Donnio B, Greget R, Kappler J P, Terazzi E and Gallani J L 2012 Magnetism in gold nanoparticles Nanoscale 4 5244 [9] Wu C-M, Li C-Y, Kuo Y-T, Wang C-W, Wu S-Y and Li W-H 2009 Quantum spins in Mackay icosahedral gold nanoparticles J. Nanopart. Res. 12 177–85 [10] Crespo P, de la Presa P, Marín P, Multigner M, Alonso J M, Rivero G, Yndurain F, González-Calbet J M and Hernando A 2013 Magnetism in nanoparticles: tuning properties with coatings J. Phys. Condens. Matter 25 484006 [11] Hernando A, Crespo P, García M A, Coey M, Ayuela A and Echenique P M 2011 Revisiting magnetism of capped Au and ZnO nanoparticles: surface band structure and atomic orbital with giant magnetic moment Phys. Stat. Sol. B 248 10 2352–60 and references therein [12] Ayuela A, Crespo P, García M A, Hernando A and Echenique P M 2012 sp magnetism in clusters of gold thiolates New J. Phys. 14 013064 [13] González C, Simón Manso Y, Márquez M and Mújica V 2006 Chemisorption-induced spin symmetry breaking in gold clusters and the onset of paramagnetism in capped gold nanoparticles J. Phys. Chem. B 110 687 [14] Van Rhee P G, Zijlstra P, Verhagen T G A, Aarts J, Katsnelson M I, Maan J C, Orrit M and Christianen P C M 2013 Giant magnetic susceptibility of gold nanorods detected by magnetic alignment Phys. Rev. Lett. 111 127202 [15] Waintal X, Fleury G, Kazymyrenko K, Houzet M, Schmitteckert P and Weinmann D 2008 Persistent currents in one dimension: the counterpart of Leggett theorem Phys. Rev. Lett. 101 106804 [16] The case of magnetic fields applied perpendicularly to the cylinder axis has been thoroughly studied in Manolescu A, Rosdah T O, Erlingsson S, Serra Ll and Gudmundsson V 2013 Snaking states on a cylindrical surface in a perpendicular magnetic field Eur. Phys. J. B 86 445 [17] Kasap S O 2002 Principles of Electronic Materials and Devices 2nd edn (New York: McGraw-Hill) [18] LaShell S, Mcdougall B A and Jensen E 1996 Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy Phys. Rev. Lett. 77 3419–22
dspace.entity.typePublication
relation.isAuthorOfPublication930014e1-7363-41d3-b971-b824e05f84b2
relation.isAuthorOfPublication.latestForDiscovery930014e1-7363-41d3-b971-b824e05f84b2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
177 (1912).pdf
Size:
197.32 KB
Format:
Adobe Portable Document Format

Collections