Classification des algèbres de Lie nilpotentes complexes de dimension 7

dc.contributor.authorAncochea Bermúdez, José María
dc.contributor.authorGoze, Michel
dc.date.accessioned2023-06-20T18:43:39Z
dc.date.available2023-06-20T18:43:39Z
dc.date.issued1989
dc.description.abstractThe authors give a complete list of the 7-dimensional complex nilpotent Lie algebras. This classification is obtained by using an invariant of nilpotent Lie algebras, called a characteristic sequence and defined by the maximum of the Segre symbols of the nilpotent linear maps ad x with x in the complement of the derived subalgebra. This invariant was introduced by them in an earlier paper [C. R. Acad. Sci. Paris Ser. I Math. 302 (1986), no. 17, 611–613; in which they determined the nilpotent complex Lie algebras corresponding to the characteristic sequences (6, 1) and (5, 1, 1). The paper under review contains no proofs; for details the authors refer to another article [the authors, “Classification des algebres de Lie nilpotentes de dimension 7”, Univ. Louis Pasteur, Strasbourg, 1986; per bibl.].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21156
dc.identifier.doi10.1007/BF01191272
dc.identifier.issn0003-889X
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2FBF01191272
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58446
dc.issue.number2
dc.journal.titleArchiv der Mathematik
dc.language.isoeng
dc.page.final185
dc.page.initial175
dc.publisherBirkhäuser Verlag
dc.rights.accessRightsrestricted access
dc.subject.cdu512.554.3
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleClassification des algèbres de Lie nilpotentes complexes de dimension 7
dc.typejournal article
dc.volume.number52
dcterms.referencesJ. M.Ancochea Bermudez et M.Goze, Sur la classification des algèbres de Lie nilpotentes de dimension 7. C.R.A.Sc. Paris I. (17)302 (1986). J. M. Ancochea Bermudez et M. Goze, Classification des algèbres de Lie nilpotentes de dimension 7. IRMA Strasbourg 1986. A.Cerezo, Les algèbres de Lie nilpotentes de dimension 6. Publication Université de Nice27 (1983). J. Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. Bull. Soc. Math. France85, 325–388 (1957). M.Goze et K.Bouyakoub, Sur les algèbres de Lie munies d'une forme symplectique. À paraître. M. Goze et J. M. Ancochea Bermudez, Classification des algèbres de Lie filiformes de dim. 8. Arch. Math.50, 511–525 (1988). M.Goze et N.Makklouf, Calcul duH 2 (g, g) sur IBMPC. Editions Mc. Arthur. Université de Haute Alsace Mulhouse 1987. V. V. Morozov, Classification des algèbres de Lie nilpotentes de dimension 6. Izv. Vyssh. Ucheb. Zar.4, 161–171 (1958). K. A.Umlauf, Über die Zusammensetzung der endlichen kontinuierlichen Transformations-gruppen, insbesondere der Gruppen vom Range Null. Leipzig 1891. G.Vranceau, Leçons de Géométrie différentielle. Vol. 4. Bucarest 1975. M.Vergne, Variété des algébres de Lie nilpotentes. Thèse Paris 1966.
dspace.entity.typePublication
relation.isAuthorOfPublication8afd7745-e428-4a77-b1ff-813045b673fd
relation.isAuthorOfPublication.latestForDiscovery8afd7745-e428-4a77-b1ff-813045b673fd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Parte1_Principal.pdf
Size:
378.67 KB
Format:
Adobe Portable Document Format

Collections