Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatio-temporal resolution of irradiance samples in machine learning approaches for irradiance forecasting

dc.contributor.authorEschenbach, Annette
dc.contributor.authorYepes, Guillermo
dc.contributor.authorTenllado Van Der Reijden, Christian Tomás
dc.contributor.authorGómez Pérez, José Ignacio
dc.contributor.authorPiñuel Moreno, Luis
dc.contributor.authorZarzalejo, Luiis F.
dc.contributor.authorWilbert, Stefan
dc.date.accessioned2023-06-16T15:17:43Z
dc.date.available2023-06-16T15:17:43Z
dc.date.issued2020-03
dc.description©2020 IEEE This work was supported in part by the Spanish Ministry of Science and Innovation under Grant RTI2018-093684-B-I00, and in part by the Regional Government of Madrid under Grant S2018/TCS-4423.
dc.description.abstractImproving short term solar irradiance forecasting is crucial to increase the market share of the solar energy production. This paper analyzes the impact of using spatially distributed irradiance sensors as inputs to four machine learning algorithms: ARX, NN, RRF and RT. We used data from two different sensor networks for our experiments, the NREL dataset that includes data from 17 sensors that cover a 1 km^2 area and the InfoRiego dataset which includes data from 50 sensors that cover an area of 94 Km^2. Several studies have been published that use these datasets individually, to the author knowledge this is the flrst work that evaluates the influence of the spatially distributed data across a range from 0.5 to 17 sensors per km^2. We show that all of algorithms evaluated are able to take advantage of the data from the surroundings, from the very short forecast horizons of 10s up to a few hours, and that the wind direction and intensity plays an important role in the optimal distribution of the network and its density. We show that these machine learning methods are more effective on the short horizons when data is obtained from a dense enough network to capture the cloud movements in the prediction interval, and that in those cases complex non-linear models give better results. On the other hand, if only a sparse network is available, the simpler linear models give better results. The skills obtained with the models under test range from 13% to 70%, depending on the sensor network density, time resolution and lead time.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/60408
dc.identifier.doi10.1109/ACCESS.2020.2980775
dc.identifier.issn2169-3536
dc.identifier.officialurlhttp://dx.doi.org/10.1109/ACCESS.2020.2980775
dc.identifier.relatedurlhttps://ieeexplore.ieee.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6227
dc.journal.titleIEEE access
dc.language.isoeng
dc.page.final51531
dc.page.initial51518
dc.publisherIEEE
dc.relation.projectIDRTI2018-093684-B-I00
dc.relation.projectIDCABAHLA-CM (S2018/TCS-4423)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu004.8
dc.subject.keywordSolar-radiation
dc.subject.keywordCloud motion
dc.subject.keywordNetwork
dc.subject.keywordSystems
dc.subject.keywordModels
dc.subject.keywordImpact
dc.subject.keywordMachine learning
dc.subject.keywordForecasting
dc.subject.keywordSpatial resolution
dc.subject.keywordSolar irradiance
dc.subject.keywordGlobal horizontal irradiance
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleSpatio-temporal resolution of irradiance samples in machine learning approaches for irradiance forecasting
dc.typejournal article
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublicationd47f11bf-2134-459b-bcf7-6e1efa4aa8b6
relation.isAuthorOfPublicatione83f8db2-0fb6-4141-8ec5-d20d09ce194d
relation.isAuthorOfPublication2ce782af-0e05-45eb-b58a-d2efffec6785
relation.isAuthorOfPublication.latestForDiscoverye83f8db2-0fb6-4141-8ec5-d20d09ce194d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Piñuel 02 libre+CC.pdf
Size:
3.84 MB
Format:
Adobe Portable Document Format

Collections