Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

EA-based ASV trajectory planner for detecting cyanobacterial blooms in freshwater

dc.conference.date15-19 Jul 2023
dc.conference.placeLisbon, Portugal
dc.conference.titleGECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference
dc.contributor.authorCarazo Barbero, Gonzalo
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorRisco Martín, José Luis
dc.contributor.authorLópez Orozco, José Antonio
dc.date.accessioned2024-01-31T08:58:27Z
dc.date.available2024-01-31T08:58:27Z
dc.date.issued2023
dc.descriptionEl texto completo de este trabajo no se encuentra disponible por no haber sido facilitado aún por su autor, por restricciones de copyright, o por no existir una versión digital.
dc.description.abstractCyanobacterial Blooms (CBs) constitute a relevant ecological and public health problem since they often produce toxic metabolites that endanger the lives of many species, and they prevent human water consumption and recreational use. To determine the locations of CBs in lentic water bodies, we present a new planner based on Evolutionary Algorithms (EAs) that optimizes the trajectory of an Autonomous Surface Vehicle (ASV) equipped with a probe capable of detecting CBs. The planner 1) exploits the information provided by a particle transport simulator that determines the CB distribution from the water currents and the inherent CB behavior (in particular, its biological growth and vertical displacements) and 2) is supported by an EA that optimizes the mission duration, the ASV trajectory length, and the contributions of each simulated particle to the predicted cyanobacterial concentration along the ASV trajectory. The planner also ensures the trajectory feasibility from the ASV, probe, and water body perspective; and refines the trajectory shape by increasing the number of the decision variables during the iteration of an EA supported by usual NSGA-II operations. The results over different scenarios show that the planner determines overall good solutions that adapt the ASV trajectory to the evolution of CB distribution.eng
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipBanco de Santander
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statusunpub
dc.identifier.citationGonzalo Carazo-Barbero, Eva Besada-Portas, José Luis Risco-Martín, and José Antonio López-Orozco. 2023. EA-based ASV Trajectory Planner for Detecting Cyanobacterial Blooms in Freshwater. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '23). Association for Computing Machinery, New York, NY, USA, 1321–1329. https://doi.org/10.1145/3583131.3590484
dc.identifier.doi10.1145/3583131.3590484
dc.identifier.isbn979-8-4007-0119-1
dc.identifier.officialurlhttps://www.doi.org/10.1145/3583131.3590484
dc.identifier.relatedurlhttps://dl.acm.org/doi/10.1145/3583131.3590484
dc.identifier.urihttps://hdl.handle.net/20.500.14352/96895
dc.language.isoeng
dc.page.final1329
dc.page.initial1321
dc.relation.projectIDinfo:eu-repo/grantAgreement/Y2020/TCS-6420
dc.relation.projectIDinfo:eu-repo/grantAgreement/TED2021-130123B-I00
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCIN/AEI/10.13039/501100011033
dc.relation.projectIDinfo:eu-repo/grantAgreement/PID2021-127648OB-C33
dc.relation.projectIDinfo:eu-repo/grantAgreement/CT82/20-CT83/20
dc.rights.accessRightsrestricted access
dc.subject.cdu004.8
dc.subject.keywordGenetic Algorithms
dc.subject.keywordMulti-objective Optimization
dc.subject.keywordDecision Making
dc.subject.keywordEarth Sciences and the Environment
dc.subject.keywordRobotics
dc.subject.ucmRobótica
dc.subject.unesco3319.03 Barcos de Navegación Interior
dc.subject.unesco2508.08 Limnología
dc.subject.unesco3311.01 Tecnología de la Automatización
dc.titleEA-based ASV trajectory planner for detecting cyanobacterial blooms in freshwater
dc.typeconference paper
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublicationaf03238f-870d-4cb5-b21a-9c38b4e3145e
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublicationb18c2bd8-52be-4d79-bd8b-dbd8e970d703
relation.isAuthorOfPublication26b95994-f79c-4d7c-8de5-a003d6d2a770
relation.isAuthorOfPublication.latestForDiscoveryaf03238f-870d-4cb5-b21a-9c38b4e3145e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cyanobacterial_bloom_in_fresh_water.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format