EA-based ASV trajectory planner for detecting cyanobacterial blooms in freshwater
dc.conference.date | 15-19 Jul 2023 | |
dc.conference.place | Lisbon, Portugal | |
dc.conference.title | GECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference | |
dc.contributor.author | Carazo Barbero, Gonzalo | |
dc.contributor.author | Besada Portas, Eva | |
dc.contributor.author | Risco Martín, José Luis | |
dc.contributor.author | López Orozco, José Antonio | |
dc.date.accessioned | 2024-01-31T08:58:27Z | |
dc.date.available | 2024-01-31T08:58:27Z | |
dc.date.issued | 2023 | |
dc.description | El texto completo de este trabajo no se encuentra disponible por no haber sido facilitado aún por su autor, por restricciones de copyright, o por no existir una versión digital. | |
dc.description.abstract | Cyanobacterial Blooms (CBs) constitute a relevant ecological and public health problem since they often produce toxic metabolites that endanger the lives of many species, and they prevent human water consumption and recreational use. To determine the locations of CBs in lentic water bodies, we present a new planner based on Evolutionary Algorithms (EAs) that optimizes the trajectory of an Autonomous Surface Vehicle (ASV) equipped with a probe capable of detecting CBs. The planner 1) exploits the information provided by a particle transport simulator that determines the CB distribution from the water currents and the inherent CB behavior (in particular, its biological growth and vertical displacements) and 2) is supported by an EA that optimizes the mission duration, the ASV trajectory length, and the contributions of each simulated particle to the predicted cyanobacterial concentration along the ASV trajectory. The planner also ensures the trajectory feasibility from the ASV, probe, and water body perspective; and refines the trajectory shape by increasing the number of the decision variables during the iteration of an EA supported by usual NSGA-II operations. The results over different scenarios show that the planner determines overall good solutions that adapt the ASV trajectory to the evolution of CB distribution. | eng |
dc.description.department | Sección Deptal. de Arquitectura de Computadores y Automática (Físicas) | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | European Commission | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.sponsorship | Banco de Santander | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (España) | |
dc.description.status | unpub | |
dc.identifier.citation | Gonzalo Carazo-Barbero, Eva Besada-Portas, José Luis Risco-Martín, and José Antonio López-Orozco. 2023. EA-based ASV Trajectory Planner for Detecting Cyanobacterial Blooms in Freshwater. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '23). Association for Computing Machinery, New York, NY, USA, 1321–1329. https://doi.org/10.1145/3583131.3590484 | |
dc.identifier.doi | 10.1145/3583131.3590484 | |
dc.identifier.isbn | 979-8-4007-0119-1 | |
dc.identifier.officialurl | https://www.doi.org/10.1145/3583131.3590484 | |
dc.identifier.relatedurl | https://dl.acm.org/doi/10.1145/3583131.3590484 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/96895 | |
dc.language.iso | eng | |
dc.page.final | 1329 | |
dc.page.initial | 1321 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Y2020/TCS-6420 | |
dc.relation.projectID | info:eu-repo/grantAgreement/TED2021-130123B-I00 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIN/AEI/10.13039/501100011033 | |
dc.relation.projectID | info:eu-repo/grantAgreement/PID2021-127648OB-C33 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CT82/20-CT83/20 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 004.8 | |
dc.subject.keyword | Genetic Algorithms | |
dc.subject.keyword | Multi-objective Optimization | |
dc.subject.keyword | Decision Making | |
dc.subject.keyword | Earth Sciences and the Environment | |
dc.subject.keyword | Robotics | |
dc.subject.ucm | Robótica | |
dc.subject.unesco | 3319.03 Barcos de Navegación Interior | |
dc.subject.unesco | 2508.08 Limnología | |
dc.subject.unesco | 3311.01 Tecnología de la Automatización | |
dc.title | EA-based ASV trajectory planner for detecting cyanobacterial blooms in freshwater | |
dc.type | conference paper | |
dc.type.hasVersion | AM | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af03238f-870d-4cb5-b21a-9c38b4e3145e | |
relation.isAuthorOfPublication | 0acc96fe-6132-45c5-ad71-299c9dcb6682 | |
relation.isAuthorOfPublication | b18c2bd8-52be-4d79-bd8b-dbd8e970d703 | |
relation.isAuthorOfPublication | 26b95994-f79c-4d7c-8de5-a003d6d2a770 | |
relation.isAuthorOfPublication.latestForDiscovery | af03238f-870d-4cb5-b21a-9c38b4e3145e |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Cyanobacterial_bloom_in_fresh_water.pdf
- Size:
- 1.52 MB
- Format:
- Adobe Portable Document Format