Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Extinction and positivity for a system of semilinear parabolic variational inequalities

dc.contributor.authorFriedman, Avner
dc.contributor.authorHerrero, Miguel A.
dc.date.accessioned2023-06-20T17:05:40Z
dc.date.available2023-06-20T17:05:40Z
dc.date.issued1992-06
dc.description.abstractA simple model of chemical kinetics with two concentrations u and v can be formulated as a system of two parabolic variational inequalities with reaction rates v(p) and u(q) for te diffusion processes of u and v, respectively. It is shown that if pq < 1 and the initial values of u and v are “comparable” then at least one of the concentrations becomes extinct in finite time. On the other hand, for any p = q > 0 there are initial values for which both concentrations do not become extinct in any finite time.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17417
dc.identifier.doi10.1016/0022-247X(92)90244-8
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0022247X92902448
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57759
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final175
dc.page.initial167
dc.publisherElsevier
dc.relation.projectIDDMS-86-12880
dc.relation.projectIDPB86-00112-C0282
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordModel of chemical kinetics with two concentrations
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleExtinction and positivity for a system of semilinear parabolic variational inequalities
dc.typejournal article
dc.volume.number167
dcterms.referencesS. N. ANTONCEV, On the localization of solutions of nonlinear degenerate elliptic and parabolic equations, Soviet Math. Dokl. 24 (1981), 420-424. H. BREZIS AND A. FRIEDMAN, Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math. 20 (1976), 82-97. L. C. EVANS AND B. F. KNERR, Instantaneous shrinking of the support of nonnegative solutions to certain parabolic equations and variational inequalities, Illinois J. Much. 23(1979), 153-166. A. FRIEDMAN, “Variational Principles and Free Boundary Problems,” Wiley, New York, 1982. A. FRIEDMAN AND M. A. HERRERO, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 124 (1987), 550-546. M. A. HERRERO AND J. J. L. VELÁZQUEZ, Approaching an extinction point in semilinear heat equations with strong absorption, to appear. A. S. KALASHNIKOV, The propagation of disturbances in problems of nonlinear heat conduction with absorption, U.S.S.R. Comput. Math. and Math. Phys. 14 (1974), 70-85.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero42.pdf
Size:
347.68 KB
Format:
Adobe Portable Document Format

Collections