Publication:
Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses

dc.contributor.authorBilloire, A.
dc.contributor.authorFernández Pérez, Luis Antonio
dc.contributor.authorMaiorano, A.
dc.contributor.authorMarinari, E.
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorYllanes, D.
dc.date.accessioned2023-06-20T04:12:37Z
dc.date.available2023-06-20T04:12:37Z
dc.date.issued2011-10
dc.description© 2011 IOP Publishing Ltd and SISSA. We are indebted to the Janus collaboration that has allowed us to use equilibrium spin configurations of the D = 3 Edwards-Anderson model [4, 5] obtained by large scale numerical simulations. AB thanks Cécile Monthus and Thomas Garel for discussions at an early stage of the work and, specially, Barbara Coluzzi for a sustained collaboration on the study of the SK model. We acknowledge partial financial support from MICINN, Spain, (contract no FIS2009-12648-C03), from UCM-Banco de Santander (GR32/10-A/910383) and from the DREAM Seed Project of the Italian Institute of Technology (IIT). DY was supported by the FPU program (Spain).
dc.description.abstractUsing the results of large scale numerical simulations we study the probability distribution of the pseudo critical temperature for the three dimensional Edwards Anderson Ising spin glass and for the fully connected Sherrington-Kirkpatrick model. We find that the behaviour of our data is nicely described by straightforward finitesize scaling relations.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipUCM-Banco de Santander
dc.description.sponsorshipItalian Institute of Technology (IIT)
dc.description.sponsorshipFPU program (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37788
dc.identifier.citation[1] J. A. Mydosh, Spin Glasses: an Experimental Introduction (Taylor and Francis, London 1993) [2] K. H. Fisher, J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge 1993). [3] Y. G. Joh, et al., Phys. Rev. Lett., 82, 438 (1999). [4] R. Álvarez Baños, A. Cruz, L. A. Fernández, J. M. Gil Narvion, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, J. Monforte García, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Pérez Gaviro, J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancón, R. Tripiccione, D. Yllanes (Janus Collaboration), J. Stat. Mech., 2010, P06026. [5] R. Álvarez Baños, A. Cruz, L. A. Fernández, J. M. Gil Narvión, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, J. Monforte García, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Pérez Gaviro, J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancón, R. Tripiccione, D. Yllanes (Janus Collaboration), Phys. Rev. Lett., 105, 177202 (2010). [6] D. J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore 2005). [7] See e.g. L. Berthier, et al., Science, 310, 1797 (2005), and references therein. [8] A. B. Harris, J. Phys. C, 7, 1671 (1974). [9] A. Aharony, A. B. Harris, Phys Rev Lett, 77, 3700 (1996). [10] F. Pázmándi, R. T. Scalettar, G. T. Zimányi, Phys. Rev. Lett., 79, 5130 (1997). [11] S. Wiseman, E. Domany, Phys. Rev. Lett., 81, 22 (1998) -- ibid, Phys Rev E, 58, 2938 (1998). [12] A. Aharony, A. B. Harris, S. Wiseman, Phys. Rev. Lett., 81, 252 (1998). [13] K. Bernardet, F. Pázmándi, G. G. Batrouni, Phys. Rev. Lett., 84, 4477 (2000). [14] S. Wiseman, E. Domany, Phys Rev E, 52, 3469 (1995). [15] J. T. Chayes, L. Chayes, D. S. Fisher, T. Spencer, Phys. Rev. Lett., 57, 2999 (1986). [16] T. Sarlat, A. Billoire, G. Biroli, J.-P. Bouchaud, J. Stat. Mech., P08014 (2009). [17] M. Castellana, E. Zarinelli, Phys. Rev. B, 84, 144417 (2011). [18] M. Castellana, A. Decelle, E. Zarinelli, preprint arXiv:1107.1795. [19] A. Billoire, B. Coluzzi (2006), unpublished. [20] G. Parisi, F. Ritort, F. Slanina, J. Phys. A: Math. Gen., 26, 247 (1993). [21] We are assuming that hSxiJ 6= 0 in the low temperature phase, i.e. for example that we are working with an infinitesimal magnetic field. [22] T. Aspelmeier, A. Billoire, E. Marinari, M. A. Moore, J. Phys. A, 41, 324008 (2008). [23] See for example B. Efron and R. J. Tibshirani, An Introduction to the Boostrap (Chapman & Hall/CRC,London 1994). [24] M. Hasenbusch, A. Pelissetto, E. Vicari, Phys. Rev. B, 78, 214205 (2008). [25] H. G. Katzgraber, M. Körner, A. P. Young, Phys. Rev. B, 73, 224432 (2006). [26] D. J. Thouless, P. W. Anderson, R. G. Palmer, Philos. Mag., 35, 593 (1977). [27] A. J. Bray, M. A. Moore, J. Phys. C: Solid State Phys., 12, L441 (1979). [28] C. A. Tracy, H. Widom, Comm. Math. Phys., 177, 727 (1996) -- M. Dieng, Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representation PhD thesis, UC Davis (2005), arXiv:math/0506586 -- P. Deift, D.Gioev, Comm. Pure Appl. Math., 60, 867 (2007), arXiv:math-ph/0507023. [29] T. W. Anderson, Ann. Math. Statist., 33, 1148 (1962). [30] D. A. Darling, Ann. Math. Statist., 28, 823 (1957). [31] D. A. Darling, Ann. Math. Statist., 26, 1 (1955). [32] Given two independent samples of N and M values respectively of a random variable x, whose empirical distribution functions are F_(N) (x) and G_(M)(x), and being H_(N+M)(x) the empirical distribution function of the sample obtained by combining the two original samples together, the two-samples Cramér-von Mises statistics is the distance T(N,M) = [N M/(N + M)] R^(∞)_(−∞) [F_(N)(x) – G_(M)(x)]^(2)dH_(N+M)(x).
dc.identifier.doi10.1088/1742-5468/2011/10/P10019
dc.identifier.issn1742-5468
dc.identifier.officialurlhttp://doi.org/10.1088/1742-5468/2011/10/P10019
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.relatedurlhttp://arxiv.org/pdf/1108.1336.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45045
dc.journal.titleJournal of statistical mechanics : theory and experiment
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.projectIDFIS2009-12648-C03
dc.relation.projectIDGR32/10-A/910383
dc.relation.projectIDDREAM Seed
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.cdu53
dc.subject.keywordCritical disordered-systems
dc.subject.keywordSolvable model
dc.subject.keywordEnsembles
dc.subject.keywordSmirnov
dc.subject.keywordLength.
dc.subject.ucmFísica (Física)
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.unesco22 Física
dc.titleFinite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication146096b1-5825-4230-8ad9-b2dad468673b
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery146096b1-5825-4230-8ad9-b2dad468673b
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezPérezLuisAntonio74LIBRE PREPRINT.pdf
Size:
819.3 KB
Format:
Adobe Portable Document Format
Collections