Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Soft dimension theory

dc.contributor.authorGonzález Pachón, J.
dc.contributor.authorGómez González, Daniel
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorYáñez Gestoso, Francisco Javier
dc.date.accessioned2023-06-20T16:59:56Z
dc.date.available2023-06-20T16:59:56Z
dc.date.issued2003
dc.description.abstractClassical dimension theory, when applied to preference modeling, is based upon the assumption that linear ordering is the only elemental notion for rationality. In fact, crisp preferences are in some way decomposed into basic criteria, each one being a linear order. In this paper, we propose that indeed dimension is relative to a previous idea of rationality, but such a rationality is not unique. In particular, we explore alternative approaches to dimension, based upon a more general representation and allowing different classes of orders for basic criteria. In this way, classical dimension theory is generalized. As a first consequence, we explore the existence of crisp preference representations not being based upon linear orders. As a second consequence, it is suggested that an analysis of valued preference relations can be developed in terms of the representations of all alpha-cuts.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16725
dc.identifier.citationGonzález-Pachón, J., Gómez, D., Montero, J., Yáñez, J.: Soft dimension theory. Fuzzy Sets and Systems. 137, 137-149 (2003). https://doi.org/10.1016/S0165-0114(02)00437-2
dc.identifier.doi10.1016/S0165-0114(02)00437-2
dc.identifier.issn0165-0114
dc.identifier.officialurlhttps//doi.org/10.1016/S0165-0114(02)00437-2
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0165011402004372
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57597
dc.issue.number1
dc.journal.titleFuzzy Sets and Systems
dc.language.isoeng
dc.page.final149
dc.page.initial137
dc.publisherElsevier Science Bv
dc.relation.projectIDPB98-0825
dc.rights.accessRightsrestricted access
dc.subject.cdu519.83
dc.subject.cdu510.64
dc.subject.keywordMulticriteria decision analysis
dc.subject.keywordDimension theory
dc.subject.keywordFuzzy preference relations.
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.subject.unesco1102.14 Lógica Simbólica
dc.titleSoft dimension theoryen
dc.typejournal article
dc.volume.number137
dcterms.referencesD. Adnadjevic, Dimension off uzzy ordered sets, Fuzzy Sets and Systems 67 (1994) 349–357. V. Cutello, J. Montero, Fuzzy rationality measures, Fuzzy Sets and Systems 62 (1994) 39–54. J.P. Doignon, J. Mitas, Dimension ofvalued relations, European J. Oper. Res. 125 (2000) 571–587. B. Dushnik, E.W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941) 600–610. J.C. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer, Dordrecht, 1994. J.C. Fodor, M. Roubens, Structure ofvalued binary relations, Math. Soc. Sci. 30 (1995) 71–94. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980. J. Gonzalez-Pachon, D. Gomez, J. Montero, J. Yañez, Searching for the dimension of binary valued preference relations, Int. J. Approx. Reasoning (2003), to appear. J. Gonzalez-Pachon, S. Rios-Insua, Mixture ofmaximal quasi orders: a new approach to preference modelling, Theory Decisions 47 (1999) 73–88. C. Marichal, J.P. Brans, The GDSS promethee procedure, J. Decision Systems 7 (1998) 283–307. J. Montero, Arrow’s theorem under fuzzy rationality, Behav. Sci. 32 (1987) 267–273. J. Montero, J. Tejada, Some problems on the denition of fuzzy preference relation, Fuzzy Sets and Systems 20 (1986) 45–53. J. Montero, J. Yañez, V. Cutello, On the dimension of fuzzy preference relations, in: Proc. Internat. ICSC Sympon.Engineering ofIntelligent Systems, vol. 3, University ofLa Laguna, 1998, pp. 28–33. J. Montero, J. Yañez, D. Gomez, J. Gonzalez-Pachon, Consistency in dimension theory, in: Proc. Workshop on Preference Modelling and Applications, Granada, April 25–27, 2001, pp. 93–98. S.V. Ovchinnikov, Representation oftransitive fuzzy relations, in: H.J. Skala, S. Termini, E. Trillas (Eds.),Aspects of Vagueness, Reidel, Amsterdam, 1984, pp. 105–118. S.V. Ovchinnikov, M. Roubens, On strict preference relations, Fuzzy Sets and Systems 43 (1991) 319–326. M. Roubens, Ph. Vincke, Preference Modelling, Springer, Berlin, 1985. B. Roy, Un algorithme de classements fond$e sur le une repr$esentation Ooue des preferences en pr$esence de criteres multiples (la methode ELECTRE), Revue Francaise d’Informatique et de Recherche Operationnelle 8 (1968) 57–75. B. Roy, Decision aid and decision making, European J. Oper. Res. 45 (1990) 324–331. E. Szpilrajn, Sur l’extension de l’ordre partiel, Fund.Math. 16 (1930) 386–389. W.T. Trotter, Combinatorics and Partially Ordered Sets.Dimension Theory, The Johns Hopkins University Press, Baltimore and London, 1992. M. Yannakakis, On the complexity ofthe partial order dimension problem, SIAM J. Algebra Discrete Math. 3 (1982) 351–358. J. Yañez, J. Montero, A poset dimension algorithm, J. Algorithms 30 (1999) 185–208. L.A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971) 177–200.
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication5ce22aab-a4c1-4dfe-b8f9-78e09cbd2878
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero47.pdf
Size:
234.05 KB
Format:
Adobe Portable Document Format

Collections