Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

DeepEMhancer: a deep learning solution for cryo-EM volume post-processing

dc.contributor.authorSánchez García, Rubén
dc.contributor.authorGómez Blanco, Josue
dc.contributor.authorCuervo, Ana
dc.contributor.authorCarazo García, José María
dc.contributor.authorSorzano Sánchez, Óscar
dc.contributor.authorVargas Balbuena, Javier
dc.date.accessioned2023-06-16T14:15:46Z
dc.date.available2023-06-16T14:15:46Z
dc.date.issued2021-07-15
dc.description© The Author(s) 2021. The authors would like to acknowledge economical support from: The Spanish Ministry of Science and Innovation through Grants: Proyectos de I+D+i - RTI Tipo A PID2019-108850RA-I00, SEV 2017-0712, PID2019-104757RB-I00/ AEI/10.13039/501100011033; the “Comunidad Autónoma de Madrid” through Grant S2017/BMD-3817; CSIC: PIE/COVID-19 number 202020E079; European Union (EU) and Horizon 2020 through grants EOSC Life (INFRAEOSC-04-2018, Proposal: 824087) and HighResCells (ERC - 2018- SyG, Proposal: 810057). J.V. acknowledges economical support from the Ramón y Cajal 2018 program (RYC2018-024087-I).
dc.description.abstractCryo-EM maps are valuable sources of information for protein structure modeling. However, due to the loss of contrast at high frequencies, they generally need to be post-processed to improve their interpretability. Most popular approaches, based on global B-factor correction, suffer from limitations. For instance, they ignore the heterogeneity in the map local quality that reconstructions tend to exhibit. Aiming to overcome these problems, we present DeepEMhancer, a deep learning approach designed to perform automatic post-processing of cryo-EM maps. Trained on a dataset of pairs of experimental maps and maps sharpened using their respective atomic models, DeepEMhancer has learned how to post-process experimental maps performing masking-like and sharpening-like operations in a single step. DeepEMhancer was evaluated on a testing set of 20 different experimental maps, showing its ability to reduce noise levels and obtain more detailed versions of the experimental maps. Additionally, we illustrated the benefits of DeepEMhancer on the structure of the SARS-CoV-2 RNA polymerase. Sanchez-Garcia et al. present DeepEMhancer, a deep learning-based method that can automatically perform post-processing of raw cryo-electron microscopy density maps. The authors report that DeepEMhancer globally improves local quality of density maps, and may represent a useful tool for novel structures where PDB models are not readily available.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipPrograma Ramón y Cajal
dc.description.sponsorshipConsejo Superior de Investigaciones Científicas (CSIC)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67541
dc.identifier.doi10.1038/s42003-021-02399-1
dc.identifier.issn2399-3642
dc.identifier.officialurlhttp://dx.doi.org/10.1038/s42003-021-02399-1
dc.identifier.relatedurlhttps://www.nature.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4410
dc.issue.number1
dc.journal.titleCommunications biology
dc.language.isoeng
dc.publisherNature Research
dc.relation.projectIDINFRAEOSC (824087); HighResCells (810057)
dc.relation.projectID(PID2019-108850RA-I00, SEV 2017-0712, PID2019-104757RB-I00/AEI/10.13039/501100011033)
dc.relation.projectIDTomoXLiver-CM (S2017/BMD-3817)
dc.relation.projectIDRYC2018-024087-I
dc.relation.projectIDPIE/ COVID-19 (202020E079)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu535
dc.subject.keywordBiology
dc.subject.keywordMultidisciplinary sciences
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleDeepEMhancer: a deep learning solution for cryo-EM volume post-processing
dc.typejournal article
dc.volume.number4
dspace.entity.typePublication
relation.isAuthorOfPublication6ccb1e60-8b61-4b23-8a0a-09af30f7b795
relation.isAuthorOfPublication.latestForDiscovery6ccb1e60-8b61-4b23-8a0a-09af30f7b795

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vargas, Javier 03 libre+CC.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format

Collections