Predicting the Risk of Overweight and Obesity in Madrid : A Binary Classification Approach with Evolutionary Feature Selection
dc.contributor.author | Gutiérrez-Gallego, Alberto | |
dc.contributor.author | Zekri-Nechar, Khaoula | |
dc.contributor.author | Zamorano-León, José J. | |
dc.contributor.author | Heras, Natalia De las | |
dc.contributor.author | Parra Rodríguez, Daniel | |
dc.contributor.author | Velasco Cabo, José Manuel | |
dc.contributor.author | Garnica Alcázar, Antonio Óscar | |
dc.contributor.author | Hidalgo Pérez, José Ignacio | |
dc.date.accessioned | 2025-01-30T15:30:50Z | |
dc.date.available | 2025-01-30T15:30:50Z | |
dc.date.issued | 2022-08-18 | |
dc.description.abstract | In this paper, we experimented with a set of machine-learning classifiers for predicting the risk of a person being overweight or obese, taking into account his/her dietary habits and socioeconomic information. We investigate with ten different machine-learning algorithms combined with four feature-selection strategies (two evolutionary feature-selection methods, one feature selection from the literature, and no feature selection). We tackle the problem under a binary classification approach with evolutionary feature selection. In particular, we use a genetic algorithm to select the set of variables (features) that optimize the accuracy of the classifiers. As an additional contribution, we designed a variant of the Stud GA, a particular structure of the selection operator of individuals where a reduced set of elitist solutions dominate the process. The genetic algorithm uses a direct binary encoding, allowing a more efficient evaluation of the individuals. We use a dataset with information from more than 1170 people in the Spanish Region of Madrid. Both evolutionary and classical feature-selection methods were successfully applied to Gradient Boosting and Decision Tree algorithms, reaching values up to 79% and increasing the average accuracy by two points, respectively. | |
dc.description.department | Depto. de Arquitectura de Computadores y Automática | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.doi | 10.3390/app12168251 | |
dc.identifier.issn | 2076-3417 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/117368 | |
dc.journal.title | Applied Sciences | |
dc.language.iso | eng | |
dc.publisher | MDPI | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keyword | Feature selection | |
dc.subject.keyword | Classification | |
dc.subject.keyword | Genetic algorithm | |
dc.subject.keyword | Evolutionary computing | |
dc.subject.keyword | Overweight; obesity | |
dc.subject.ucm | Informática (Informática) | |
dc.subject.unesco | 33 Ciencias Tecnológicas | |
dc.title | Predicting the Risk of Overweight and Obesity in Madrid : A Binary Classification Approach with Evolutionary Feature Selection | |
dc.type | journal article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8adfcc3a-ded6-4197-9dfa-15172ba51830 | |
relation.isAuthorOfPublication | ce8731c7-a3bb-4010-98d9-e9b72622941b | |
relation.isAuthorOfPublication | 33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e | |
relation.isAuthorOfPublication | 981f825f-2880-449a-bcfc-686b866206d0 | |
relation.isAuthorOfPublication.latestForDiscovery | 8adfcc3a-ded6-4197-9dfa-15172ba51830 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Predicting_ Risk_Overweight.pdf
- Size:
- 1.01 MB
- Format:
- Adobe Portable Document Format