Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Predicting the Risk of Overweight and Obesity in Madrid : A Binary Classification Approach with Evolutionary Feature Selection

dc.contributor.authorGutiérrez-Gallego, Alberto
dc.contributor.authorZekri-Nechar, Khaoula
dc.contributor.authorZamorano-León, José J.
dc.contributor.authorHeras, Natalia De las
dc.contributor.authorParra Rodríguez, Daniel
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorGarnica Alcázar, Antonio Óscar
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2025-01-30T15:30:50Z
dc.date.available2025-01-30T15:30:50Z
dc.date.issued2022-08-18
dc.description.abstractIn this paper, we experimented with a set of machine-learning classifiers for predicting the risk of a person being overweight or obese, taking into account his/her dietary habits and socioeconomic information. We investigate with ten different machine-learning algorithms combined with four feature-selection strategies (two evolutionary feature-selection methods, one feature selection from the literature, and no feature selection). We tackle the problem under a binary classification approach with evolutionary feature selection. In particular, we use a genetic algorithm to select the set of variables (features) that optimize the accuracy of the classifiers. As an additional contribution, we designed a variant of the Stud GA, a particular structure of the selection operator of individuals where a reduced set of elitist solutions dominate the process. The genetic algorithm uses a direct binary encoding, allowing a more efficient evaluation of the individuals. We use a dataset with information from more than 1170 people in the Spanish Region of Madrid. Both evolutionary and classical feature-selection methods were successfully applied to Gradient Boosting and Decision Tree algorithms, reaching values up to 79% and increasing the average accuracy by two points, respectively.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.3390/app12168251
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117368
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.publisherMDPI
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordFeature selection
dc.subject.keywordClassification
dc.subject.keywordGenetic algorithm
dc.subject.keywordEvolutionary computing
dc.subject.keywordOverweight; obesity
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titlePredicting the Risk of Overweight and Obesity in Madrid : A Binary Classification Approach with Evolutionary Feature Selection
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication8adfcc3a-ded6-4197-9dfa-15172ba51830
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscovery8adfcc3a-ded6-4197-9dfa-15172ba51830

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Predicting_ Risk_Overweight.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

Collections