Predicting the Risk of Overweight and Obesity in Madrid : A Binary Classification Approach with Evolutionary Feature Selection

dc.contributor.authorGutiérrez-Gallego, Alberto
dc.contributor.authorZekri-Nechar, Khaoula
dc.contributor.authorZamorano-León, José J.
dc.contributor.authorHeras, Natalia De las
dc.contributor.authorParra Rodríguez, Daniel
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorGarnica Alcázar, Antonio Óscar
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2025-01-30T15:30:50Z
dc.date.available2025-01-30T15:30:50Z
dc.date.issued2022-08-18
dc.description.abstractIn this paper, we experimented with a set of machine-learning classifiers for predicting the risk of a person being overweight or obese, taking into account his/her dietary habits and socioeconomic information. We investigate with ten different machine-learning algorithms combined with four feature-selection strategies (two evolutionary feature-selection methods, one feature selection from the literature, and no feature selection). We tackle the problem under a binary classification approach with evolutionary feature selection. In particular, we use a genetic algorithm to select the set of variables (features) that optimize the accuracy of the classifiers. As an additional contribution, we designed a variant of the Stud GA, a particular structure of the selection operator of individuals where a reduced set of elitist solutions dominate the process. The genetic algorithm uses a direct binary encoding, allowing a more efficient evaluation of the individuals. We use a dataset with information from more than 1170 people in the Spanish Region of Madrid. Both evolutionary and classical feature-selection methods were successfully applied to Gradient Boosting and Decision Tree algorithms, reaching values up to 79% and increasing the average accuracy by two points, respectively.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.3390/app12168251
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117368
dc.journal.titleApplied Sciences
dc.language.isoeng
dc.publisherMDPI
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordFeature selection
dc.subject.keywordClassification
dc.subject.keywordGenetic algorithm
dc.subject.keywordEvolutionary computing
dc.subject.keywordOverweight; obesity
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titlePredicting the Risk of Overweight and Obesity in Madrid : A Binary Classification Approach with Evolutionary Feature Selection
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication8adfcc3a-ded6-4197-9dfa-15172ba51830
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscovery8adfcc3a-ded6-4197-9dfa-15172ba51830

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Predicting_ Risk_Overweight.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

Collections