Matrix product states, random matrix theory and the principle of maximum entropy

dc.contributor.authorCollins, Benoit
dc.contributor.authorGonzalez Guillen, Carlos E.
dc.contributor.authorPérez García, David
dc.date.accessioned2023-06-19T13:21:53Z
dc.date.available2023-06-19T13:21:53Z
dc.date.issued2013-06
dc.description.abstractUsing random matrix techniques and the theory of Matrix Product States we show that reduced density matrices of quantum spin chains have generically maximum entropy.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipANR Galoisint
dc.description.sponsorshipNSERC
dc.description.sponsorshipANR GranMa
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22593
dc.identifier.doi10.1007/s00220-013-1718-x
dc.identifier.issn0010-3616
dc.identifier.officialurlhttp://link.springer.com/article/10.1007%2Fs00220-013-1718-x
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33334
dc.issue.number3
dc.journal.titleCommunications in Mathematical Physics
dc.language.isoeng
dc.page.final677
dc.page.initial663
dc.publisherSpringer
dc.relation.projectIDQUEVADIS (233859)
dc.relation.projectIDQUITEMAD-CM (S2009/ESP-1594)
dc.relation.projectID(MTM2011-26912)
dc.relation.projectIDCHIST-ERA CQC
dc.relation.projectID(RGPIN/341303-2007)
dc.rights.accessRightsopen access
dc.subject.cdu512.643
dc.subject.keywordTeoría de Matrices
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleMatrix product states, random matrix theory and the principle of maximum entropy
dc.typejournal article
dc.volume.number320
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1201.6324v1.pdf
Size:
393.5 KB
Format:
Adobe Portable Document Format

Collections