Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

A geometrical interpretation on the Pauli exclusion principle in classical field-theory

dc.contributor.authorFernández-Rañada, Antonio
dc.date.accessioned2023-06-21T02:07:09Z
dc.date.available2023-06-21T02:07:09Z
dc.date.issued1985
dc.description.abstractIt is shown that classical Dirac fields with the same couplings obey the Pauli exclusion principle in the following sense: If at a certain time two Dirac fields are in different states, they can never reach the same one. This is geometrically interpreted as analogous to the impossibility of crossing of trajectories in the phase space of a dynamical system. An application is made to a model in which extended particles are represented as solitary waves of a set of several fundamental, confined nonlinear Dirac fields, with the result that the same mechanism accounts both for fermion and boson behaviors.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25281
dc.identifier.doi10.1007/BF00738739
dc.identifier.issn0015-9018
dc.identifier.officialurlhttp://dx.doi.org/10.1007/BF00738739
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64896
dc.issue.number1
dc.journal.titleFoundations of Physics
dc.page.final100
dc.page.initial89
dc.publisherSpringer
dc.rights.accessRightsmetadata only access
dc.subject.cdu537
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleA geometrical interpretation on the Pauli exclusion principle in classical field-theory
dc.typejournal article
dc.volume.number15
dcterms.references1.- F. Calogero, A. Degasperis, and D. Levi in Nonlinear Problems in Theoretical Physics, Lecture Notes in Physics 98, A. F. Rañada, ed. (Springer-Verlag, Berlin, 1979). 2.- M. Soler, Phys. Rev. D 1, 2766 (1970). 3.- A. F. Rañada, M. F. Rañada, M. Soler, and L. Vázquez, Phys. Rev. D 10, 517 (1974). 4.- A. F. Rañada, and L. Vázquez, Prog. Theor. Phys. 56, 311 (1976). 5.- A. F. Rañada, J. Phys. A.: Math. Gen. 11, 341 (1978). 6.- L. García and A. F. Rañada, Prog. Theor. Phys. 64, 671 (1980). 7.- A. F. Rañada, in Quantum Physics, Groups, Fields, and Particles, A. O. Barut, ed. (Reidel, Dordrecht, 1983), p. 271. 8.- A. F. Rañada, in Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology: Essays in Honor of Wolfgang Yourgrau, A. van der Merwe, ed. (Plenum, New York, 1983), p. 363. 9.- L. García and J. Usón,Found. Phys. 10, 137 (1980). 10.- A. F. Rañada and M. F. Rañada, Preprint Universidad Complutense UCMFT 82/2,Physica D 9, 251 (1983). 11.- A. F. Rañada, Int. J. Theor. Phys. 16, 795 (1977). 12.- A. F. Rañada and J. Usón, J. Math. Phys. 21, 1205 (1980); 22, 2533 (1981). 13.- C. Teitelboim, in Current Trends in the Theory of Fields (American Institute of Physics, New York, 1978). 14.- C. A. P. Galvao and C. Teitelboim, J. Math. Phys. 21, 1863 (1980). 15.- N. Kemmer, Proc. Roy. Soc. London 173, 91 (1939). 16.- E. Sudarshan and M. Mukhunda, Classical Mechanics: A Modern Perspective (Wiley, New York, 1974). 17.- A. F. Rañada and M. F. Rañada, Phys. Rev. D 29, 985 (1984).
dspace.entity.typePublication

Download

Collections