Inborn Error of STAT2-Dependent IFN-I Immunity in a Patient Presented with Hemophagocytic Lymphohistiocytosis and Multisystem Inflammatory Syndrome in Children
Loading...
Official URL
Full text at PDC
Publication date
2023
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
López-Nevado M, Sevilla J, Almendro-Vázquez P, Gil-Etayo FJ, Garcinuño S, Serrano-Hernández A, Paz-Artal E, González-Granado LI, Allende LM. Inborn Error of STAT2-Dependent IFN-I Immunity in a Patient Presented with Hemophagocytic Lymphohistiocytosis and Multisystem Inflammatory Syndrome in Children. J Clin Immunol. 2023 Aug;43(6):1278-1288. doi: 10.1007/s10875-023-01488-6. Epub 2023 Apr 19. PMID: 37074537; PMCID: PMC10113994.
Abstract
Human inborn errors of immunity (IEI) affecting the type I interferon (IFN-I) induction pathway have been associated with predisposition to severe viral infections. Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyperinflammatory syndrome that has been increasingly associated with inborn errors of IFN-I-mediated innate immunity. Here is reported a novel case of complete deficiency of STAT2 in a 3-year-old child that presented with typical features of HLH after mumps, measles, and rubella vaccination at the age of 12 months. Due to the life-threatening risk of viral infection, she received SARS-CoV-2 mRNA vaccination. Unfortunately, she developed multisystem inflammatory syndrome in children (MIS-C) after SARS-CoV-2 infection, 4 months after the last dose. Functional studies showed an impaired IFN-I-induced response and a defective IFNα expression at later stages of STAT2 pathway induction. These results suggest a possible more complex mechanism for hyperinflammatory reactions in this type of patients involving a possible defect in the IFN-I production. Understanding the cellular and molecular links between IFN-I-induced signaling and hyperinflammatory syndromes can be critical for the diagnosis and tailored management of these patients with predisposition to severe viral infection.