Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An alternative route to detect parity violating energy differences through Bose-Einstein condensation of chiral molecules

dc.contributor.authorBargueño, Pedro
dc.contributor.authorPérez de Tudela, Ricardo
dc.contributor.authorMiret Artés, Salvador
dc.contributor.authorGonzalo Fonrodona, Isabel
dc.date.accessioned2023-06-20T03:48:39Z
dc.date.available2023-06-20T03:48:39Z
dc.date.issued2011
dc.descriptionThis journal is © the Owner Societies 2011. This work has been funded by the MEC (Spain) under projects CTQ2008-02578/BQU, FIS2007-62006 and FIS2007-65382, supported by grants BES-2006-11976 (P. B.) and BES-2006-7454 (R. P. de T.). P. B. dedicates this work to Anais Dorta-Urra for her help and encouragement during recent months.
dc.description.abstractInteractions which do not conserve parity might influence chiral compounds giving rise to a parity violating energy difference (PVED) that might have affected the evolution towards homochirality. However, this tiny effect predicted by electroweak-quantum chemistry calculations is easily masked by thermal effects, making it desirable to reach cold regimes in the laboratory. As an alternative route to the detection of the PVED, we study a simplified model of Bose-Einstein condensation of a sample of non-interacting chiral molecules, showing that it leads to a nonzero optical activity of the condensate and also to a subcritical temperature in the heat capacity, due to the internal structure of the molecule characterized by tunneling and parity violation. This predicted singular behavior found for the specific heat, below the condensation temperature, might shed some light on the existence of the thus far elusive PVED between enantiomers.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28922
dc.identifier.doi10.1039/c0cp00907e
dc.identifier.issn1463-9076
dc.identifier.officialurlhttp://dx.doi.org/10.1039/c0cp00907e
dc.identifier.relatedurlhttp://pubs.rsc.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44482
dc.issue.number3
dc.journal.titlePhysical chemistry chemical physics
dc.language.isoeng
dc.page.final810
dc.page.initial806
dc.publisherRoyal Society of Chemistry
dc.relation.projectIDCTQ2008-02578/BQU
dc.relation.projectIDFIS2007-62006
dc.relation.projectIDFIS2007-65382
dc.relation.projectIDBES-2006-11976
dc.relation.projectIDBES-2006-7454
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordPhase-transitions
dc.subject.keywordWeak-interactions
dc.subject.keywordBiomolecules
dc.subject.keywordEnantiomers
dc.subject.keywordSpectroscopy
dc.subject.keywordConservation
dc.subject.keywordHypothesis
dc.subject.keywordCrystals
dc.subject.keywordSearch
dc.subject.keywordAtoms
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleAn alternative route to detect parity violating energy differences through Bose-Einstein condensation of chiral molecules
dc.typejournal article
dc.volume.number13
dcterms.references1 T. D. Lee and C. N. Yang, Phys. Rev., 1956, 104, 254. 2 C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson, Phys. Rev., 1957, 105, 1413. 3 A. M. Bouchiat and C. C. Bouchiat, Rep. Prog. Phys., 1997, 60, 1351. 4 R. Zanasi, P. Lazzeretti, A. Ligabue and A. Soncini, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, 59, 3382. 5 J. K. Laerdahl, P. Schwerdtfeger and H. M. Quiney, Phys. Rev. Lett., 2000, 84, 3811. 6 J. Thyssen, J. K. Laerdahl and P. Schwerdtfeger, Phys. Rev. Lett., 2000, 85, 3105. 7 A. S. Lahamer, S. M. Mahurin, R. N. Compton, D. House, J. K. Laerdahl, M. Lein and P. Schwerdtfeger, Phys. Rev. Lett., 2000, 85, 4470. 8 F. Faglioni, P. S. D’Agostino, B. Cadioli and P. Lazzeretti, Chem. Phys. Lett., 2005, 407, 522. 9 F. Faglioni, A. Passalacqua and P. Lazzeretti, Origins Life Evol. Biosphere, 2005, 35, 461. 10 F. Faglioni, I. G. Cuesta and P. Lazzeretti, Chem. Phys. Lett., 2006, 432, 263. 11 P. Soulard, P. Asselin, A. Cuisset, J. R. Aviles Moreno, T. R. Huet, D. Petitprez, J. Demaison, T. B. Freedman, X. Cao, L. A. Nafie and J. Crassous, Phys. Chem. Chem. Phys., 2006, 8, 79. 12 D. Figgen and P. Schwerdtfeger, Phys. Rev. A: At., Mol., Opt. Phys., 2008, 78, 012511. 13 M. Quack, J. Stohner and M. Willeke, Annu. Rev. Phys. Chem., 2008, 59, 741. 14 D. Figgen, A. Koers and P. Schwerdtfeger, Angew. Chem. Int. Ed., 2010, 49, 2941. 15 C. Daussy, T. Marrel, A. Amy-Klein, C. T. Nguyen, C. J. Bordé and C. Chardonnet, Phys. Rev. Lett., 1999, 83, 1554. 16 J. Crassous, C. Chardonnet, T. Saue and P. Schwerdtfeger, Org. Biomol. Chem., 2005, 3, 2218. 17 A. Guijarro and M. Yus, The Origin of Chirality in the Molecules of Life, RSC Publishing, Cambridge, 2009. 18 A. J. MacDermott, T. Fu, R. Nakatsuka, A. P. Coleman and G. O. Hyde, Origins Life Evol. Biosphere, 2009, 39, 459. 19 V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A: At., Mol., Opt. Phys., 2006, 74, 025601. 20 P. Blythe, B. Roth, U. Frohlich, H. Wenz and S. Schiller, Phys. Rev. Lett., 2005, 95, 183002. 21 J. M. Hudson and P. Soldan, Int. Rev. Phys. Chem., 2006, 25, 497. 22 J. M. Hudson and P. Soldan, Int. Rev. Phys. Chem., 2007, 26, 1. 23 L. D. Carr and J. Ye, New J. Phys., 2009, 11, 055049. 24 P. Bargueñ o, I. Gonzalo, R. Pérez de Tudela and S. Miret-Artés, Chem. Phys. Lett., 2009, 483, 204. 25 I. Gonzalo, P. Bargueñ o, R. Pérez de Tudela and S. Miret-Artés, Chem. Phys. Lett., 2010, 489, 127. 26 A. Salam, J. Mol. Evol., 1991, 33, 105. 27 A. Salam, Phys. Lett. B, 1992, 288, 153. 28 W. Wang, F. Yi, Z. Zhao, X. Jin and Y. Tang, J. Biol. Phys., 2000, 26, 51. 29 R. Sullivan, M. Pyda, J. Pak, B. Wunderlich, J. R. Thompson, R. Pagni, H. Pan, C. Barnes, P. Schwerdtfeger and R. Compton, J. Phys. Chem. A, 2003, 107, 6674. 30 C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge University Press, 2002. 31 R. A. Harris and L. Stodolsky, Phys. Lett. B, 1978, 78, 313. 32 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science, 1995, 269, 198. 33 C. A. Regal, C. Ticknor, J. L. Bohn and D. S. Jin, Nature, 2003, 424, 47. 34 R. P. Feynman, Statistical Mechanics, Advance Books Classics, Addison-Wesley, 1998. 35 R. K. Pathria, Statistical Mechanics, Pergamon Press, Oxford, 1972. 36 L. F. Lemmens, F. Brosens and J. T. Devreese, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, 61, 3358. 37 G.-L. Ingold, P. Hänggi and P. Talkner, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2009, 79, 061105.
dspace.entity.typePublication
relation.isAuthorOfPublicationc1ad80a2-9d2c-49ce-b112-8e3dfa47d18c
relation.isAuthorOfPublication.latestForDiscoveryc1ad80a2-9d2c-49ce-b112-8e3dfa47d18c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gonzalo,I 01 LIBRE.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format

Collections