Pointed order polytopes: Studying geometrical aspects of the polytope of bi-capacities
dc.contributor.author | Miranda Menéndez, Pedro | |
dc.contributor.author | García Segador, Pedro | |
dc.date.accessioned | 2023-06-16T14:25:38Z | |
dc.date.available | 2023-06-16T14:25:38Z | |
dc.date.issued | 2021-11-08 | |
dc.description.abstract | In this paper we study some geometrical questions about the polytope of bi-capacities. For this, we introduce the concept of pointed order polytope, a natural generalization of order polytopes. Basically, a pointed order polytope is a polytope that takes advantage of the order relation of a partially ordered set and such that there is a relevant element in the structure. We study which are the set of vertices of pointed order polytopes and sort out a simple way to determine whether two vertices are adjacent. We also study the general form of its faces. Next, we show that the set of bi-capacities is a special case of pointed order polytope. Then, we apply the results obtained for general pointed order polytopes for bi-capacities, allowing to characterize vertices and adjacency, and obtaining a bound for the diameter of this important polytope arising in Multicriteria Decision Making. | |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (España) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/75934 | |
dc.identifier.citation | Miranda P, García-Segador P. Pointed order polytopes: Studying geometrical aspects of the polytope of bi-capacities. Fuzzy Sets and Systems 2022; 444: 182–205. [DOI: 10.1016/j.fss.2021.11.001] | |
dc.identifier.doi | 10.1016/j.fss.2021.11.001 | |
dc.identifier.issn | 0165-0114 | |
dc.identifier.officialurl | https://doi.org/10.1016/j.fss.2021.11.001 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/5003 | |
dc.journal.title | Fuzzy Sets and Systems | |
dc.language.iso | eng | |
dc.page.final | 205 | |
dc.page.initial | 182 | |
dc.publisher | Elsevier Science Bv | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095194-B-I00/ES/ESTIMACION Y CONTRASTES DE HIPOTESIS ROBUSTOS PARA DATOS DE ALTA DIMENSION BASADOS EN LA DIVERGENCIA DE POTENCIAS DE DENSIDAD/ | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Theory of computation | |
dc.subject.keyword | Randomness | |
dc.subject.keyword | geometry and discrete structures | |
dc.subject.ucm | Geometría | |
dc.subject.unesco | 1204 Geometría | |
dc.title | Pointed order polytopes: Studying geometrical aspects of the polytope of bi-capacities | |
dc.type | journal article | |
dc.type.hasVersion | VOR | |
dc.type.hasVersion | AM | |
dc.volume.number | 444 | |
dcterms.references | [1] J. Abbas. The bipolar Choquet integral based on ternary-element sets. Journal of Arti�cial Intelligence and Soft Computing Research, 6(1):13{21, 2016. [2] G. Beliakov and J.Z. Wu. Learning fuzzy measures from data: simpli�cations and optimisation strategies. Information Sciences, 494:100{113, 2019. [3] O.V. Borodin and A.O. Ivanova. Describing faces in 3-polytopes with no vertices of degree from 5 to 7. Discrete Mathematics, 342(11):3208{3215, 2019. [4] D. Candeloro, R. Mesiar, and A.R. Sambucini. A special class of fuzzy measures. Choquet integral and applications. Fuzzy Sets and Systems, (355):83{99, 2019. [5] D. Catanzaro and R. Pesenti. Enumerating vertices of the balanced minimum evolution polytope. Computers and Operations Research, (109):209{217, 2019. [6] M. R. Chithra and A. Vijayakumar. The diameter variability of the cartesian product of graphs. Discrete Mathematics, Algorithms and Applications, 6(1), 2014. [7] G. Choquet. Theory of capacities. Annales de l'Institut Fourier, (5):131{295, 1953. [8] E. F. Combarro and P. Miranda. Identi�cation of fuzzy measures from sample data with genetic algorithms. Computers and Operations Research, 33(10):3046{3066, 2006. [9] E. F. Combarro and P. Miranda. Adjacency on the order polytope with applications to the theory of fuzzy measures. Fuzzy Sets and Systems, 180:384{398, 2010. [10] R. Dedekind. �Uber Zerlegungen von Zahlen durch ihre gr�ossten gemeinsamen Teiler. Festschrift Hoch Braunschweig Ges. Werke, II:103{148, 1897. In German. [11] D. Denneberg. Non-additive measures and integral. Kluwer Academic, Dordrecht (The Netherlands), 1994. [12] M. Grabisch. Alternative representations of discrete fuzzy measures for decision making. Inter- national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5:587{607, 1997. [13] M. Grabisch. k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, (92):167{189, 1997. [14] M. Grabisch. Set functions, games and capacities in Decision Making, volume 46 of Theory and Decision Library. Springer, 2016. [15] M. Grabisch and C. Labreuche. Bi-capacities. I. the Choquet integral. Fuzzy Sets and Systems, 151(2):236{259, 2005. [16] M. Grabisch and C. Labreuche. Bi-capacities. II. De�nition, M�obius transform and interaction. Fuzzy Sets and Systems, 151(2):211{236, 2005. [17] S. Greco, B. Matarazzo, and S. Giove. The Choquet integral with respect to a level dependent capacity. Fuzzy Sets and Systems, 175(1):1{35, 2011. [18] I. Kojadinovic and J.L. Marichal. Entropy of bi-capacities. European Journal of Operational Research, 178(1):168{184, 2007. [19] F. Lange and M. Grabisch. New axiomatizations of Shapley interaction index for bi-capacities. Fuzzy Sets and Systems, 176:64{75, 2011. [20] J. Li, X. Yao, X. Sun, and D. Wu. Determining the fuzzy measure in multiple criteria decision aiding from the tolerance perspective. Representation of associative functions. European Journal of Operational Research, 264:428{439, 2018. [21] P. Miranda and P. Garc��a-Segador. Order cones: A tool for deriving k-dimensional faces of cones of subfamilies of monotone games. Annals of Operational Research, 295(1):117{137, 2020. [22] P. Miranda and M. Grabisch. p-symmetric bi-capacities. Kybernetica, 40(4):421{440, 2004. [23] Y. Narukawa, V. Torra, and M. Sugeno. Choquet integral with resepct to a symmetric fuzzy measure of a function on the real line. Annals of Operations Research, 244:571{581, 2016. [24] C.E. Osgood, G.J. Suci, and P.H. Tannenbaum. The measurement of meaning. University of Illinois Press, Urbana (Il.), 1957. [25] R. Stanley. Two poset polytopes. Discrete Comput. Geom., 1(1):9{23, 1986. [26] M. Sugeno. Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology, 1974. [27] L. Xie and M. Grabisch. The core of bicapacities and bipolar games. Fuzzy Sets and Systems, 158(9):1000{1012, 2007. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d940fcaa-13c3-4bad-8198-1025a668ed71 | |
relation.isAuthorOfPublication | 5416c727-ae1e-4a30-9118-a87352c1a7be | |
relation.isAuthorOfPublication.latestForDiscovery | d940fcaa-13c3-4bad-8198-1025a668ed71 |