Data cloning estimation of GARCH and COGARCH models

dc.contributor.authorMarín, J.M.
dc.contributor.authorRodríguez Bernal, María Teresa
dc.date.accessioned2023-06-18T06:46:10Z
dc.date.available2023-06-18T06:46:10Z
dc.date.issued2015-06
dc.description.abstractGARCH models include most of the stylized facts of financial time series and they have been largely used to analyze discrete financial time series. In the last years, continuous time models based on discrete GARCH models have been also proposed to deal with non-equally spaced observations, as COGARCH model based on Lévy processes. In this paper, we propose to use the data cloning methodology in order to obtain estimators of GARCH and COGARCH model parameters. Data cloning methodology uses a Bayesian approach to obtain approximate maximum likelihood estimators avoiding numerically maximization of the pseudo-likelihood function. After a simulation study for both GARCH and COGARCH models using data cloning, we apply this technique to model the behavior of some NASDAQ time series.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32663
dc.identifier.doi10.1080/00949655.2014.903948
dc.identifier.issn0094-9655
dc.identifier.officialurlhttp://www.tandfonline.com/doi/abs/10.1080/00949655.2014.903948#.VbdViPntlBc
dc.identifier.relatedurlhttp://hdl.handle.net/10016/17380
dc.identifier.relatedurlhttp://www.tandfonline.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24109
dc.issue.number9
dc.journal.titleJournal of Statistical Computation and Simulation
dc.language.isoeng
dc.page.final1831
dc.page.initial1818
dc.publisherTaylor & Francis
dc.rights.accessRightsopen access
dc.subject.cdu519.22
dc.subject.keywordGARCH
dc.subject.keywordContinuous-time GARCH process
dc.subject.keywordLévy process
dc.subject.keywordCOGARCH
dc.subject.keywordData cloning
dc.subject.keywordBayesian inference
dc.subject.keywordMCMC algorithm
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleData cloning estimation of GARCH and COGARCH models
dc.typejournal article
dc.volume.number85
dspace.entity.typePublication
relation.isAuthorOfPublicationf86b44a2-b55f-45e9-b7ee-ed44fc489557
relation.isAuthorOfPublication.latestForDiscoveryf86b44a2-b55f-45e9-b7ee-ed44fc489557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodBernal203abierto.pdf
Size:
362.57 KB
Format:
Adobe Portable Document Format

Collections