Espejos de banda estrecha basados en fluoruros para instrumentación espacial en el ultravioleta lejano
Loading...
Download
Official URL
Full text at PDC
Publication date
2024
Defense date
28/04/2023
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
López Reyes, Paloma. Espejos de Banda Estrecha Basados En Fluoruros Para Instrumentación Espacial En El Ultravioleta Lejano. enero de 2024. docta.ucm.es, https://hdl.handle.net/20.500.14352/93278.
Abstract
Las comunidades astrofísica, solar y atmosférica requieren realizar observaciones del cielo en el ultravioleta lejano (UVL, longitudes de onda comprendidas en el rango de 100-200 nm), ya que este rango contiene líneas espectrales de componentes básicos del universo. Estas líneas pueden proporcionar información clave para comprender temas que van desde las atmósferas solares y planetarias, incluida la Tierra, hasta la estructura a gran escala del universo. Además, la obtención de imágenes en el UVL permite acceder a escalas angulares más finas con telescopios más pequeños que en el visible o el infrarrojo cercano, y el universo es mucho más oscuro. El UVL ha sido relativamente inaccesible para las observaciones espaciales, ya que el aire normal, junto con la gran mayoría de los materiales, se vuelve fuertemente absorbente en este rango. Esta absorción implica que las observaciones deben realizarse desde el espacio y que los materiales ópticos, especialmente los recubrimientos ópticos, tienen un rendimiento reducido en comparación con rangos como el visible. Algunas de las observaciones demandadas por la comunidad científica necesitan filtros de reflexión o transmisión, que permitan la observación de bandas espectrales específicas para cada misión, limitando la contaminación de fondo. Desgraciadamente, este tipo de ópticas de paso de banda existen de forma muy limitada en el UVL, por lo que han sido identificadas por la NASA como retos tecnológicos de nivel 3...
Astrophysics, solar physics, and atmosphere physics communities pursue observing the sky in the far ultraviolet (FUV, wavelengths comprised in the 100-200 nm range) since it contains spectral lines of basic constituents of the universe. These lines can provide key information to understand subjects ranging from solar and planetary atmospheres, including the Earth, to the large-scale structure of the universe. Additionally, imaging in the FUV provides access to higher lateral resolution with smaller telescopes than in the visible or near-infrared, and the Universe is much darker. The FUV has been relatively inaccessible for sky observations since normal air, along with the wide majority of materials, become strongly absorbent in this range. Such absorption implies that observations have to be performed from space and that the optical materials, particularly coatings, have a reduced performance compared to ranges like the visible. Some of the observations demanded by the scientific community require reflective or transmissive filters that enable high-throughput observation in selected, mission-specific bandpasses while limiting background contamination. Unfortunately, bandpass limiting optics exist in a very limited form in the FUV, and hence they have been identified by NASA as Tier 3 technology gaps...
Astrophysics, solar physics, and atmosphere physics communities pursue observing the sky in the far ultraviolet (FUV, wavelengths comprised in the 100-200 nm range) since it contains spectral lines of basic constituents of the universe. These lines can provide key information to understand subjects ranging from solar and planetary atmospheres, including the Earth, to the large-scale structure of the universe. Additionally, imaging in the FUV provides access to higher lateral resolution with smaller telescopes than in the visible or near-infrared, and the Universe is much darker. The FUV has been relatively inaccessible for sky observations since normal air, along with the wide majority of materials, become strongly absorbent in this range. Such absorption implies that observations have to be performed from space and that the optical materials, particularly coatings, have a reduced performance compared to ranges like the visible. Some of the observations demanded by the scientific community require reflective or transmissive filters that enable high-throughput observation in selected, mission-specific bandpasses while limiting background contamination. Unfortunately, bandpass limiting optics exist in a very limited form in the FUV, and hence they have been identified by NASA as Tier 3 technology gaps...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 28-04-2023