Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Ergodic Solenoidal Homology: Realization Theorem.

dc.contributor.authorMuñoz, Vicente
dc.contributor.authorPérez Marco, Ricardo
dc.date.accessioned2023-06-20T00:18:47Z
dc.date.available2023-06-20T00:18:47Z
dc.date.issued2011
dc.description.abstractWe define generalized currents associated with immersions of abstract oriented solenoids with a transversal measure. We realize geometrically the full real homology of a compact manifold with these generalized currents, and more precisely with immersions of minimal uniquely ergodic solenoids. This makes precise and geometric De Rham's realization of the real homology by only using a restricted geometric subclass of currents.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipCNRS
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16961
dc.identifier.doi10.1007/s00220-010-1183-8
dc.identifier.issn0010-3616
dc.identifier.officialurlhttp://www.springerlink.com/content/v04g2222n3526522/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42378
dc.issue.number3
dc.journal.titleCommunications in Mathematical Physics
dc.language.isoeng
dc.page.final753
dc.page.initial737
dc.publisherSpringer
dc.relation.projectIDMTM2007-63582.
dc.relation.projectIDUMR 7539
dc.rights.accessRightsrestricted access
dc.subject.cdu5151.1
dc.subject.keywordSolenoid
dc.subject.keywordhomology
dc.subject.keywordrRealisation
dc.subject.keywordGeometric current
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleErgodic Solenoidal Homology: Realization Theorem.
dc.typejournal article
dc.volume.number302
dcterms.referencesDenjoy, A.: Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Et Appliquées 11(9. série), 333–375 (1932) Herman, M.R.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Inst.Hautes Études Sci. Publ. Math. 49, 5–233 (1979) Hurder, S., Mitsumatsu, Y.: The intersection product of transverse invariant measures. Indiana Univ.Math. J 40(4), 1169–1183 (1991) Muñoz, V., Pérez-Marco, R.: Ergodic solenoids and generalized currents. Revista Matematica Complutense.In press, doi:10.1007/s13163-010-0050-7, 2010 Muñoz,V., Pérez-Marco, R.: Schwartzman cycles and ergodic solenoids. In:Essays inMathematics and its Applications. Dedicated to Stephen Smale, eds. P. Pardalos, Th.M.Rassias. Berlin-Heidelberg-Newyork:Springer. In press Muñoz, V., Pérez-Marco, R.: Ergodic solenoidal homology: Density of ergodic solenoids. Australian J.Math. Anal. Appl. 6(1), Article 11, 1–8 (2009) Rourke, C., Sanderson, B.: The compression theorem.Geometry & Topology 5, 399–429 (2001) Ruelle, D., Sullivan, D.: Currents, flows and diffeomorphisms. Topology 14(4), 319–327 (1975) Schwartzman, S.: Asymptotic cycles. Ann. Math. 66(2), 270–284 (1957) Serre, J.-P.: Groupes d’homotopie et classes de groupes abéliens.. Ann. Math. 58(2), 258–294 (1943) Sullivan, D.: Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent.Math. 36, 225–255 (1976) Sullivan, D.: René Thom’s work on geometric homology class and bordism. Bull. AMS 41(3), 341–350 (2004) Thom, R.: Sous-variétés et classes d’homologie des variétés différentiables. I et II. C. R. Acad. Sci. Paris 236, 453–454 and 573–575 (1953) Thom, R.: Quelques propriétés globales des variétés différentiables. Commentarii Mathematici Halvetici 236, 17–86 (1954) Wells, R.: Cobordisms groups of immersions. Topology 5, 281–294 (1966) Zucker, S.: The Hodge conjecture for cubic fourfolds. Compositio. Math. 34, 199–209 (1977)
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz04.pdf
Size:
432.5 KB
Format:
Adobe Portable Document Format

Collections