φ^4 theory in 1+d dimensions at high temperature: dimensional reductinon

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
The φ^4 theory in 1+d dimensions is analyzed at high temperatures in the imaginary-time formalism. General results are given for the leading high-temperature contributions to all renormalized Careen's functions. The latter are generated by a high-temperature partition function which describes another φ^4 theory in d spatial dimensions with special mass renormalizations. The triviality/nontriviality of the (φ^4)_1+3 theory is discussed briefiy.
© 1987 The American Physical Society. The author acknowledges the financial support provided by a Fulbright-Ministerio de Educacion y Ciencia (Spain) grant, through Council for International Exchange of Scholars. He is grateful to Professor B. Zumino, Professor M. K. Gaillard, and the Theoretical Physics Group, Lawrence Berkeley Laboratory for their kind hospitality. He also thanks Professor B. Zumino for reading the manuscript and to Dr. A. Niemi and Dr. M. do Amaral for discussions. This work was supported by the Director, Office of Energy Research, Oftice of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC03-76-SF00098, the National Science Foundation under Research Grant No. PHYS. 85-15857, and Plan Movilizador de la Fisica de Altas Energias, Comision Asesora de Investigacion Cientifica y Tecnica, Spain (proyecto AE86-0029).
Unesco subjects
1 L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974); D. Gross, R. Pisarski, and L. Yaffe, Rev. Mod. Phys. 53, 43 (1981); R. Jackiw and S. Templeton, Phys. Rev. D 23, 2291 (1981); T. Appelquist and R. Pisarski, ibid. 23, 2305 (1981); A. Jourjine, Ann. Phys. (N.Y.) 155, 305 (1984). 2 T. Appelquist and R. Carazzone, Phys. Rev. D 11, 2856 (1975) 3 R. F. Álvarez-Estrada, Ann. Phys. (N.Y.) 174, 442 (1987). 4 C. W. Bernard, Phys. Rev. D 9, 3312 (1974). 5 E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic, New York, 1976), Vol. 6. 6 P. D. Morley and M. B. Kisslinger, Phys. Rep. 51, 83 (1979). 7 J. Frohlich, Nucl. Phys. B200, 281 (1982); C. Aragao de Carvalho, S. Caracciolo, and J. Frohlich, ibid. B215, 209 (1983); B. Freedman, P. Smolensky, and D. Weingarten, Phys. Lett. 113B,481 (1983); D. J. E. Callaway and R. Petronzio, Nucl. Phys. B240, 577 (1984); M. G. do Amaral and R. C. Shellard, Phys. Lett. B 171, 285 (1986). 8 C. Brydges, J. Frohlich, and A. D. Sokal, Commun. Math. Phys. 91, 141 (1983). 9 P. M. Stevenson, Phys. Rev. D 32, 1389 (1985). 10 P. M. Stevenson and R. Tarrach, Phys. Lett. B 176, 436 (1986). 11 B. Alles and R. Tarrach, Phys. Rev. D 33, 1718 (1986); 34, 644(E) (1986). 12 W. Bardeen and M. Moshe, Phys. Rev. D 28, 1372 (1983); 34, 1229 (1986).