Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Theoretical method for the study of plasmon generation in hybrid multilayer-optical fiber structures

dc.contributor.authorEsteban Martínez, Óscar
dc.contributor.authorNavarrete Fernández, María Cruz
dc.contributor.authorGonzález Cano, Agustín
dc.date.accessioned2023-06-20T10:40:32Z
dc.date.available2023-06-20T10:40:32Z
dc.date.issued2005-02
dc.description© 2005 IEEE. The authors would like to thank A. Luis, Departamento de Óptica, UCM, for helpful comments and R. Alonso, C. Cosculluela, and F. Villuendas, Departamento de Física Aplicada, Universidad de Zaragoza, for providing the sensors.
dc.description.abstractA theoretical method is presented for the determination of the behavior of devices based on the deposition of multilayer structures on polished optical fibers. Plasmon generation in metallic layers is modeled. The method is based on the Rayleigh expansion of the electric fields and permits us to determine their distribution over the whole structure by an application of boundary conditions. Once the distribution is known, the power transmitted by the fiber can be computed as a function of the geometrical and refractive parameters of the device. The method is versatile and can be used as a theoretical tool for the design of devices of that type used for many different purposes. We present real experimental results obtained with an operative sensor that agree with the theoretical predictions of our technique and prove its suitability.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24377
dc.identifier.doi10.1109/JSEN.2004.839902
dc.identifier.issn1530-437X
dc.identifier.officialurlhttp://dx.doi.org/10.1109/JSEN.2004.839902
dc.identifier.relatedurlhttp://ieeexplore.ieee.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50962
dc.issue.number1
dc.journal.titleIEEE Sensors Journal
dc.language.isoeng
dc.page.final58
dc.page.initial53
dc.publisherIEEE
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordSingle-Mode
dc.subject.keywordExcitation
dc.subject.keywordSensors
dc.subject.keywordPropagation
dc.subject.keywordOverlay
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleTheoretical method for the study of plasmon generation in hybrid multilayer-optical fiber structures
dc.typejournal article
dc.volume.number5
dcterms.references[1] G. Stewart et al., “Surface plasmon resonances in thin metal films for optical fiber devices,” Opt. Fiber Sens., pp. 328–331, 1988. [2] E. Lavretskii, V. Kutsaenko, and W. Johnstone, “Continuous fiber component for optical sensing using multilayer planar overlay with a thin metal film,” Proc. SPIE, vol. 2360, pp. 557–559, 1994. [3] R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New in-line optical fiber sensor base don surface plasmon excitation,” Sens. Actuators A, vol. 37–38, pp. 187–192, 1993. [4] Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, “Measurement of salinity degree of water with a fiber-optic sensor,” Appl. Opt., vol. 38, pp. 5267–5271, 1999. [5] S.-M. Tseng, K.-Y. Hsu, and K.-F. Chen, “Analysis and experiment of thin metal-clad fiber polarizer with index overlay,” IEEE Photon. Technol. Lett., vol. 9, no. 4, pp. 628–630, Apr. 1997. [6] J. Ctyroký, J. Homola, and M. Skalský, “Modeling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation,” Opt. Quantum Electron., vol. 29, pp. 301–311, 1997. [7] D. Marcuse, “Investigation of coupling between a fiber and an infinite slab,” J. Lightwave Technol., vol. 7, no. 1, pp. 122–130, Jan. 1989. [8] C. Vasallo, “Rigorous theory for modes of optical fibres with cladding limited by a plane,” Electron. Lett., vol. 22, pp. 944–945, 1986. [9] A. Sharma, J. Kompella, and P. K. Mishra, “Analysis of fiber directional couplers and coupler half-blocks using a new simple model for singlemode fibers,” J. Lightwave Technol., vol. 8, no. 2, pp. 143–151, Feb. 1990. [10] Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, “Simple mode of compound waveguide structures used as fiber-optic sensors,” Opt. Lasers Eng., vol. 33, pp. 219–233, 2000. [11] R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and F. Tornos, “Singlemode optical-fiber sensors and tunable filters based on the resonant excitation of metal-clad modes,” Appl. Opt., vol. 33, pp. 5197–5201, 1994. [12] M. N. Zervas, “Optical-Fiber surface-plasmon-wave polarizers,” in Proc. 6th Int. Conf. Optical fiber Sensors, 1989. [13] R. Slavík, J. Homola, and J. Ctyroký, “Optical fiber surface plasmon resonance sensor for an aqueous environment,” in Proc. 12th Int. Conf. Optical Fiber Sensors, vol. 16, Washington, DC, 1997. [14] Ó. Esteban, R. Alonso, M. C. Navarrete, and A. González-Cano, “Surface plasmon excitation in fiber-optics sensors: a novel theoretical approach,” J. Lightwave Technol., vol. 20, no. 3, pp. 448–453, Mar. 2002. [15] F. I. Baida, D. Van Labeke, and J. M. Vigoureux, “Theoretical study of near-field surface plasmon excitation, propagation and diffraction,” Opt. Commun., vol. 171, pp. 317–331, 1999. [16] O. G. Leminger and R. Zengerle, “Determination of single-mode fiber coupler design parameters from loss measurements ,” J. Lightwave Technol., vol. LT-3, no. 4, pp. 864–867, Aug. 1985. [17] A. W. Snyder and J. D. Love, Optical Waveguide Theory, New York: Chapman & Hall, 1983.
dspace.entity.typePublication
relation.isAuthorOfPublicationdcb68811-1dc9-4b0a-9d96-31fe85a121da
relation.isAuthorOfPublication8f013df5-4042-4b99-b639-1176bcb4d4ce
relation.isAuthorOfPublication.latestForDiscoverydcb68811-1dc9-4b0a-9d96-31fe85a121da

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NavarreteMC18.pdf
Size:
309.95 KB
Format:
Adobe Portable Document Format

Collections