On representations of 2-bridge knot groups in quaternion algebras.

dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-20T03:32:58Z
dc.date.available2023-06-20T03:32:58Z
dc.date.issued2011-10-10
dc.description.abstractRepresentations of two bridge knot groups in the isometry group of some complete Riemannian 3-manifolds as E3 (Euclidean 3-space), H3 (hyperbolic 3-space) and E2, 1 (Minkowski 3-space), using quaternion algebra theory, are studied. We study the different representations of a 2-generator group in which the generators are send to conjugate elements, by analyzing the points of an algebraic variety, that we call the variety of affine c-representations ofG. Each point in this variety corresponds to a representation in the unit group of a quaternion algebra and their affine deformations.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMTM2007-67908-C02-01 and MTM2010-21740-C02-02.
dc.description.sponsorshipMTM2006-00825 and MTM2009-07030.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21529
dc.identifier.doi10.1142/S0218216511009224
dc.identifier.issn0218-2165
dc.identifier.officialurlhttp://www.worldscientific.com/doi/pdf/10.1142/S0218216511009224
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43832
dc.issue.number10
dc.journal.titleJournal Of Knot Theory And Its Ramifications
dc.language.isoeng
dc.page.final1419
dc.page.initial1419
dc.publisherWorld Scientific PublCo
dc.relation.projectID2007-67908-C02-01
dc.relation.projectID2010-21740-C02-02
dc.relation.projectID2006-00825
dc.relation.projectID2009-07030
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.keywordQuaternion algebra
dc.subject.keywordrepresentation
dc.subject.keywordknot group
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn representations of 2-bridge knot groups in quaternion algebras.
dc.typejournal article
dc.volume.number20
dcterms.referencesG. W. Brumfiel and H. M. Hilden, (SL)2 Representations of Finitely Presented Groups, Contemporary Mathematics, Vol. 187 (American Mathematical Society, Providence, RI, 1995). V. Charette, T. Drumm, W. Goldman and M. Morrill, Complete flat affine and Lorentzian manifolds, Geom. Dedicata 97 (2003) 187–198. Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). D. Cooper and D. D. Long, Remarks on the A-polynomial of a knot, J. Knot Theory Ramifications 5(5) (1996) 609–628. ) R. H. Crowell and R. H. Fox, Introduction to Knot Theory, based upon lectures given at Haverford College under the Philips Lecture Program (Ginn and Co., Boston, MA, 1963). M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. (2) 117(1) (1983) 109–146. G. de Rham, Introduction aux polynômes d'un nœud, Enseign. Math. (2) 13 (1967) 187–194. D. Fried and W. M. Goldman, Three-dimensional affine crystallographic groups, Adv. Math. 47(1) (1983) 1–49. W. M. Goldman, Nonstandard Lorentz space forms, J. Differential Geom. 21(2) (1985) 301–308. F. González-Acu~na and J. M. Montesinos-Amilibia, On the character variety of group representations in SL(2,C) and PSL(2,C), Math. Z. 214(4) (1993) 627–652. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, On the character variety of group representations of a 2-bridge link p/3 into PSL(2,C), Bol. Soc. Mat. Mexicana (2) 37(1–2) (1992) 241–262. Papers in honor of José Adem (in Spanish). H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant, J. Knot Theory Ramifications 4(1) (1995) 81–114. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, Character varieties and peripheral polynomials of a class of knots, J. Knot Theory Ramifications 12(8) (2003) 1093–1130. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, Peripheral polynomials of hyperbolic knots, Topol. Appl. 150(1–3) (2005) 267–288. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, On the affine representations of the trefoil knot group, preprint (2010), arXiv:1003.3554 [math.GT]. T. Y. Lam, The Algebraic Theory of Quadratic Forms, Mathematics Lecture Note Series (W. A. Benjamin, Reading, MA, 1973). R. Riley, Nonabelian representations of 2-bridge knot groups, Q. J. Math. (2) 35(138) (1984) 191–208.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos34.pdf
Size:
731.43 KB
Format:
Adobe Portable Document Format

Collections