Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The minimal Tjurina number of irreducible germs of plane curves singularities

dc.contributor.authorAlberich-Carramiñana, María
dc.contributor.authorAlmirón, Patricio
dc.contributor.authorBlanco, Guillem
dc.contributor.authorMelle Hernández, Alejandro
dc.date.accessioned2023-06-17T08:27:58Z
dc.date.available2023-06-17T08:27:58Z
dc.date.issued2020
dc.description.abstractIn this paper we give a positive answer to a question of Dimca and Greuel about the quotient between the Milnor and the Tjurina numbers for any irreducible germ of plane curve singularity. This result is based on a closed formula for the minimal Tjurina number of an equisingularity class in terms of the sequence of multiplicities of the strict transform along a resolution. The key points for the proof are previous results by Genzmer [6], and by Wall and Mattei [13, 11].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipGeneralitat de Catalunya
dc.description.sponsorshipBarcelona Graduate School of Mathematics (BGSMath)
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72777
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7204
dc.language.isoeng
dc.relation.projectIDMTM2015-69135-P; MTM2016-76868-C2-1-P
dc.relation.projectID2017SGR-932
dc.relation.projectIDMDM-2014-0445
dc.rights.accessRightsopen access
dc.subject.cdu512.76/.77
dc.subject.keywordCurve singularities
dc.subject.keywordTjurina number
dc.subject.keywordMilnor number
dc.subject.ucmFunciones (Matemáticas)
dc.subject.ucmGeometria algebraica
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe minimal Tjurina number of irreducible germs of plane curves singularities
dc.typejournal article
dcterms.references[1] P. Almirón, G. Blanco, A note on a question of Dimca and Greuel, C. R. Math. Acad. Sci. Paris, Ser. I 357 (2019), 205–208. [2] J. Brian¸con, M. Granger, Ph. Maisonobe, Le nombre de modules du germe de courbe plane x a+y b = 0, Math. Ann. 279 (1988), 535–551. [3] E. Casas-Alvero, Singularities of plane curves, London Math. Soc. Lecture Note Ser. 276, Cambridge Univ. Press, Cambridge, 2000. [4] C. Delorme, Sur les modules des singularités des courbes planes, Bull. Soc. Math. France 106 (1978), 417–446. [5] A. Dimca, G.-M. Greuel, On 1-forms on isolated complete intersection on curve singularities, J. of Singul. 18 (2018), 114–118. [6] Y. Genzmer, Dimension of the moduli space of a curve in the complex plane, Preprint in: arXiv:1610.05998 (2016). [7] Y. Genzmer, M. E. Hernandes, On the Saito’s basis and the Tjurina Number for Plane Branches, Preprint in: arXiv:1904.03645 (2019). [8] G.-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Berlin, 2007. [9] L. D. Tráng, C. P. Ramanujam, The invariance of Milnor’s number implies the invariance of the topological type, Amer. J. Math. 98 (1976), no. 1, 67–78. [10] I. Luengo, G. Pfister, Normal forms and moduli spaces of curve singularities with semigroup h2p, 2q, 2pq + di, Compos. Math. 76 (1990), no. 1–2, 247–264. [11] J. F. Mattei, Modules de feuilletages holomorphes singuliers: I équisingularité, Invent. Math. 103 (1991), no. 2, 297–325. [12] R. Peraire, Tjurina number of a generic irreducible curve singularity, J. Algebra 196 (1997), no.1,114–157. [13] C. T. C. Wall, Notes on the classification of singularities, Proc. London Math. Soc. 48 (1984), no.3,461–513. [14] C. T. C. Wall, Singular points of plane curves, London Math. Soc. Students Texts 63, Cambridge Univ.Press, Cambridge, 2004. [15] B. Teissier, Appendix, in [16], 1986. [16] O. Zariski, Le probléme des modules pour les branches planes, Hermann, Paris, 1986.
dspace.entity.typePublication
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscoveryc5f952f6-669f-4e3d-abc8-76d6ac56119b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
almiron_theminimal.pdf
Size:
361.64 KB
Format:
Adobe Portable Document Format

Collections