Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Comparing mountain breezes and their impacts on CO2 mixing ratios at three contrasting areas

dc.contributor.authorRomán Cascón, Carlos
dc.contributor.authorYagüe Anguis, Carlos
dc.contributor.authorArrillaga, Jon Ander
dc.contributor.authorLothon, Marie
dc.contributor.authorPardyjak, Eric Richard
dc.contributor.authorLohou, Fabienne
dc.contributor.authorInclán, Rosa María
dc.contributor.authorSastre Marugán, Mariano
dc.contributor.authorMaqueda Burgos, Gregorio
dc.contributor.authorDerrien, Solene
dc.contributor.authorMeyerfeld, Yves
dc.contributor.authorHang, Chao
dc.contributor.authorCampargue-Rodríguez, Pablo
dc.contributor.authorTurki, Imen
dc.date.accessioned2024-02-07T19:24:30Z
dc.date.available2024-02-07T19:24:30Z
dc.date.issued2019-01-06
dc.description.abstractThis work presents the characterisation and comparison of daytime and nighttime mountain breezes observed at three sites through the analysis of tower data. The sites are located: (i) in the foothills of the Guadarrama Mountains in Spain, (ii) on a plateau adjacent to the Pyrenees in France, and (iii) in the Salt Lake Valley (SLV) in the southwest of the United States. The thermally-driven winds are detected through a systematic algorithm which considers both synoptic and local meteorological conditions. The characteristics of the mountain breezes depend on the scale of the breeze at each site. Nighttime events are associated with stronger wind speeds at the two sites located farther away from the mountains due to larger-scale phenomena (valley winds and mountain-plain winds). The arrival of both nighttime and daytime flows to the sites are observed approximately when the buoyancy heat flux changes sign, being a few hours delayed at the sites farther from the mountains. In addition, the impacts of these breezes on CO2 mixing ratios are analysed. The characteristic increase of CO2 mixing ratio observed during the evening transition takes place approximately when the nocturnal breeze arrives at the site. Nonetheless, both processes are not always simultaneous, indicating that CO2 advection is not the main mechanism controlling the drastic CO2 increase. An analogous result is obtained for the CO2 decrease at the morning transition. However, we have found that the CO2 mixing ratio is sensitive to wind direction (horizontal advection) in highly heterogeneous areas like the SLV, where CO2 emissions from the nearby city centre play an important role. Finally, a clear relationship is found between the CO2 mixing ratio and near-surface turbulence at night. Maximum CO2 mixing ratios are found for specific turbulence thresholds, which depend on the height of the CO2 sensor. Conditions associated with both stronger and weaker turbulence levels lead to reduced CO2 mixing ratios at the local measurement height due to excessive and ineffective mixing, respectively.eng
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.sponsorshipGuadarrama Monitoring Network observational network of the CEI Moncloa Campus of International Excellence
dc.description.sponsorshipGobierno Vasco
dc.description.sponsorshipObservatoire Midi-Pyrenees (University of Toulouse)
dc.description.sponsorshipCentre National de la Recherche Scientifique (France)
dc.description.sponsorshipOffice of Naval Research
dc.description.sponsorshipFondo Europeo de Desarrollo regional
dc.description.statuspub
dc.identifier.citationRomán-Cascón, C., Yagüe, C., Arrillaga, J. A., Lothon, M., Pardyjak, E. R., Lohou, F., ... & Turki, I. (2019). Comparing mountain breezes and their impacts on CO2 mixing ratios at three contrasting areas. Atmospheric Research, 221, 111-126.
dc.identifier.doi10.1016/j.atmosres.2019.01.019
dc.identifier.issn0169-8095
dc.identifier.officialurlhttps://doi.org/10.1016/j.atmosres.2019.01.019
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/100135
dc.journal.titleAtmospheric Research
dc.language.isoeng
dc.page.final126
dc.page.initial111
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/CGL2015-65627-C3-3-R
dc.relation.projectIDinfo:eu-repo/grantAgreement/CGL2016-81828-REDT/AEI
dc.relation.projectIDinfo:eu-repo/grantAgreement/PRE_2017_2_0069
dc.relation.projectIDinfo:eu-repo/grantAgreement/N00014-11-1-0709
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu551.51
dc.subject.keywordThermally-drivenflows
dc.subject.keywordDownslope
dc.subject.keywordUpslope
dc.subject.keywordCO2
dc.subject.keywordAdvection
dc.subject.keywordTurbulent mixing
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleComparing mountain breezes and their impacts on CO2 mixing ratios at three contrasting areas
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number221
dspace.entity.typePublication
relation.isAuthorOfPublication9a4cf43f-bd9c-4b5b-9cb2-0c257e7473de
relation.isAuthorOfPublicationcf5cf9ad-8e0e-4c40-966d-58da28c01b49
relation.isAuthorOfPublication873030aa-a296-46f9-883a-7a52a9cd2909
relation.isAuthorOfPublication.latestForDiscovery9a4cf43f-bd9c-4b5b-9cb2-0c257e7473de

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0169809519300596-main.pdf
Size:
5.21 MB
Format:
Adobe Portable Document Format

Collections