Sensitivity to evidence in Gaussian Bayesian networks using mutual information
dc.contributor.author | Gómez Villegas, Miguel Ángel | |
dc.contributor.author | Main Yaque, Paloma | |
dc.contributor.author | Viviani, Paola | |
dc.date.accessioned | 2023-06-19T13:25:07Z | |
dc.date.available | 2023-06-19T13:25:07Z | |
dc.date.issued | 2014-08-10 | |
dc.description.abstract | We introduce a methodology for sensitivity analysis of evidence variables in Gaussian Bayesian networks. Knowledge of the posterior probability distribution of the target variable in a Bayesian network, given a set of evidence, is desirable. However, this evidence is not always determined; in fact, additional information might be requested to improve the solution in terms of reducing uncertainty. In this study we develop a procedure, based on Shannon entropy and information theory measures, that allows us to prioritize information according to its utility in yielding a better result. Some examples illustrate the concepts and methods introduced. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.sponsorship | Universidad Complutense de Madrid/Banco de Santander | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/26447 | |
dc.identifier.citation | Gómez Villegas, M. Á., Main Yaque, P. & Viviani, P. «Sensitivity to Evidence in Gaussian Bayesian Networks Using Mutual Information». Information Sciences, vol. 275, agosto de 2014, pp. 115-26. DOI.org (Crossref), https://doi.org/10.1016/j.ins.2014.02.025. | |
dc.identifier.doi | 10.1016/j.ins.2014.02.025 | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.officialurl | https//doi.org/10.1016/j.ins.2014.02.025 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0020025514001315 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33619 | |
dc.journal.title | Information sciences | |
dc.language.iso | eng | |
dc.page.final | 126 | |
dc.page.initial | 115 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2008-03282/MTM | |
dc.relation.projectID | 910395 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.2 | |
dc.subject.keyword | Entropy | |
dc.subject.keyword | Evidence propagation | |
dc.subject.keyword | Gaussian Bayesian network | |
dc.subject.keyword | Mutual information | |
dc.subject.keyword | Sensitivity analysis | |
dc.subject.ucm | Estadística matemática (Matemáticas) | |
dc.subject.unesco | 1209 Estadística | |
dc.title | Sensitivity to evidence in Gaussian Bayesian networks using mutual information | en |
dc.type | journal article | |
dc.volume.number | 275 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c8f6ba8b-2df4-4f4a-ac9a-76e7b061e41a | |
relation.isAuthorOfPublication | ec909d41-f0c0-40b7-9d6e-1346e1e9ef43 | |
relation.isAuthorOfPublication.latestForDiscovery | ec909d41-f0c0-40b7-9d6e-1346e1e9ef43 |
Download
Original bundle
1 - 1 of 1