Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A business context aware decision-making approach for selecting the most appropriate sentiment analysis technique in e-marketing situations

dc.contributor.authorBueno García, Itzcoatl
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorUreña, Raquel
dc.contributor.authorHerrera-Viedma, Enrique
dc.date.accessioned2025-01-14T09:37:41Z
dc.date.available2025-01-14T09:37:41Z
dc.date.issued2022
dc.description.abstractIn the era of social media, consumers interact and exchange information, subjective opin ions, feelings or thoughts about a given issue, a product or a service, via Web 2.0 technolo gies. As a result, electronic Word of Mouth, eWOM, has gained increasing influence on the formation of user opinions. Therefore, extracting and analyzing eWOM statements by means of Sentiment Analysis techniques is currently a hot topic that could potentially pro vide companies with key information about their customers. However, among all the avail able techniques, choosing the most appropriate one according to the analysis criteria is a real challenge. In this contribution, we first study the main desirable criteria for a senti ment analysis approach and classify the different existing approaches based on these cri teria to try and provide a solution to this issue. We then propose a Multi-criteria Decision-Making methodology that selects the most suitable technique for each business case by taking their particular criteria into account.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationBueno, I., Carrasco, R. A., Ureña, R., & Herrera-Viedma, E. (2022). A business context aware decision-making approach for selecting the most appropriate sentiment analysis technique in e-marketing situations. Information Sciences, 589, 300–320. https://doi.org/10.1016/J.INS.2021.12.080
dc.identifier.doi10.1016/j.ins.2021.12.080
dc.identifier.officialurlhttps://doi.org/10.1016/j.ins.2021.12.080
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114165
dc.journal.titleInformation Sciences
dc.language.isoeng
dc.page.final320
dc.page.initial300
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu519.862.6
dc.subject.cdu658.8:004.738.5
dc.subject.cdu339:077
dc.subject.keywordSentiment analysis
dc.subject.keywordAHP
dc.subject.keywordMulti-Criteria Decision-Making
dc.subject.keywordAuto machine learning
dc.subject.ucmEconometría (Estadística)
dc.subject.ucmMarketing
dc.subject.unesco5302 Econometría
dc.subject.unesco5311.05 Marketing (Comercialización)
dc.titleA business context aware decision-making approach for selecting the most appropriate sentiment analysis technique in e-marketing situations
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number589
dspace.entity.typePublication
relation.isAuthorOfPublication25aa3e94-be75-4c29-a45b-52918a67e41e
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication.latestForDiscovery25aa3e94-be75-4c29-a45b-52918a67e41e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q1-14-2022-IS-oficial.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format

Collections