Singularities of invariant connections
dc.contributor.author | Amores Lázaro, Ángel Miguel | |
dc.contributor.author | Gutiérrez, M | |
dc.date.accessioned | 2023-06-20T16:49:35Z | |
dc.date.available | 2023-06-20T16:49:35Z | |
dc.date.issued | 1992-12 | |
dc.description.abstract | A reductive homogeneous space M = P/G is considered, endowed with an invariant connection, i.e., such that all left translations of M induced by members of P preserve it. We study the set of singularities of such connections giving sufficient conditions for it to be empty, or, in other cases, families of b-incomplete curves converging to singularities. A full description of the b-completion of a connection with M = R(m) (or a quotient of it) is given with information on its topology. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14715 | |
dc.identifier.doi | 10.1007/BF02418211 | |
dc.identifier.issn | 0001-7701 | |
dc.identifier.officialurl | http://agt.cie.uma.es/~mgl/Investigacion/1992GenerRelatAndGravit/1992GRG.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57149 | |
dc.issue.number | 12 | |
dc.journal.title | General relativity and gravitation | |
dc.language.iso | eng | |
dc.page.final | 1253 | |
dc.page.initial | 1235 | |
dc.publisher | Plenum | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 52 | |
dc.subject.keyword | Astronomy & Astrophysics | |
dc.subject.keyword | Physics | |
dc.subject.keyword | Multidisciplinary | |
dc.subject.keyword | Particles & Fields | |
dc.subject.ucm | Astronomía (Matemáticas) | |
dc.subject.unesco | 21 Astronomía y Astrofísica | |
dc.title | Singularities of invariant connections | |
dc.type | journal article | |
dc.volume.number | 24 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a49b2f2d-adc2-4dbb-b8ea-f908c19a26ac | |
relation.isAuthorOfPublication.latestForDiscovery | a49b2f2d-adc2-4dbb-b8ea-f908c19a26ac |
Download
Original bundle
1 - 1 of 1