Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Machine learning Ethereum cryptocurrency prediction and knowledge-based investment strategies

dc.contributor.authorViéitez, Adrián
dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorNaranjo, Rodrigo
dc.date.accessioned2024-07-02T15:07:34Z
dc.date.available2024-07-02T15:07:34Z
dc.date.issued2024-09-05
dc.description.abstractThis work proposes a novel methodology to help in decision making in the cryptocurrency market. Two investment strategies have been designed for Ethereum (ETH), based on predictions of the price and trend of this cryptocurrency using real data. The two Ethereum cryptocurrency prediction systems rely solely on past values of other contextual stock indices, market indicators and online trends, and ignore any technical indicators of price evolution. Real data from cryptocurrency market has been collected and processed with different feature selection methods. Applying a regression approach with Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) networks, prediction models for the ETH price for 1, 7 and 15 days are obtained and compared. Also, support vector machine (SVM) is applied to predict the ETH price trend by applying a classification approach. In both approaches, sentiment analysis has been included to check its effect on the prediction results. The reliability of these prediction models in the current market has been evaluated by designing two original knowledge-based investment strategies. They are tested over two different time periods with real cryptocurrency market data. The results show that it is possible to generate up to 5.16 profit factor with few operations using these models. Furthermore, adding sentiment analysis has shown to have little influence. In this way, we contribute to the advancement of our knowledge of this volatile and still young cryptocurrency market, and specifically of the evolution of Ethereum and the factors that can influence its behavior.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.fundingtypeAPC financiada por la UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationViéitez, A., Santos, M., & Naranjo, R. (2024). Machine learning Ethereum cryptocurrency prediction and knowledge-based investment strategies. Knowledge-Based Systems, 112088.
dc.identifier.doi10.1016/j.knosys.2024.112088
dc.identifier.issn0950-7051
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105455
dc.issue.number112088
dc.journal.titleKnowledge-Based Systems
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordMachine learning
dc.subject.keywordKnowledge-based systems
dc.subject.keywordNeural networks
dc.subject.keywordCryptocurrency market
dc.subject.keywordEthereum
dc.subject.keywordForecasting
dc.subject.keywordInvestment decision system
dc.subject.ucmCiencias
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleMachine learning Ethereum cryptocurrency prediction and knowledge-based investment strategies
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number299
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KNOSYS Ethereum.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format

Collections