Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

United States banking stability: An explanation through machine learning

dc.contributor.authorFernández Fernández, José Alejandro
dc.date.accessioned2025-01-14T12:09:44Z
dc.date.available2025-01-14T12:09:44Z
dc.date.issued2020-12-16
dc.description.abstractIn this paper, an analysis of the prediction of bank stability in the United States from 1990 to 2017 is carried out, using bank solvency, delinquency and an ad hoc bank stability indicator as variables to measure said stability. Different machine learning assembly models have been used in the study, a random forest is developed because it is the most accurate of all those tested. Another novel element of the work is the use of partial dependency graphs (PDP) and individual conditional expectation curves (ICES) to interpret the results that allow observing for specific values how the banking variables vary, when the macro-financial variables vary. It is concluded that the most determining variables to predict bank solvency in the United States are interest rates, specifically the mortgage rate and the 5 and 10-year interest rates of treasury bonds, reducing solvency as these rates increase. For delin- quency, the most important variable is the unemployment rate in the forecast. The financial stability index is made up of the normalized difference between the two fac- tors obtained, one for solvency and the other for delinquency. The index prediction concludes that stability worsens as BBB corporate yield increases.
dc.description.departmentDepto. de Administración Financiera y Contabilidad
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.21511/bbs.15(4).2020.12
dc.identifier.issn1816-7403
dc.identifier.issn1991-7074
dc.identifier.officialurlhttps://dx.doi.org/10.21511/bbs.15(4).2020.12
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114247
dc.issue.number4
dc.journal.titleBanks and Bank Systems
dc.language.isoeng
dc.page.final149
dc.page.initial137
dc.publisherLLC “Consulting Publishing Company “Business Perspectives”
dc.rightsAttribution-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.jelC40
dc.subject.jelE47
dc.subject.jelY21
dc.subject.keywordSolvency
dc.subject.keywordDelinquency
dc.subject.keywordRandom forest
dc.subject.keywordICES curves
dc.subject.ucmBancos y cajas
dc.subject.unesco5302 Econometría
dc.titleUnited States banking stability: An explanation through machine learning
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublication1f76b0d9-7e79-47fc-bd5f-583053675573
relation.isAuthorOfPublication.latestForDiscovery1f76b0d9-7e79-47fc-bd5f-583053675573

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
“United States banking stability- An explanation through machine learning”.pdf
Size:
865.36 KB
Format:
Adobe Portable Document Format

Collections