Hyperparabolic concentrators
| dc.contributor.author | García Botella, Ángel | |
| dc.contributor.author | Álvarez Fernández-Balbuena, Antonio | |
| dc.contributor.author | Vázquez Molini, Daniel | |
| dc.contributor.author | Bernabeu Martínez, Eusebio | |
| dc.contributor.author | González Cano, Agustín | |
| dc.date.accessioned | 2023-06-20T03:42:36Z | |
| dc.date.available | 2023-06-20T03:42:36Z | |
| dc.date.issued | 2009-02-01 | |
| dc.description | © 2009 Optical Society of America. | |
| dc.description.abstract | We present a family of three-dimensional concentrators constructed from the photic field generated by a Lambertian emitter. The profile of these concentrators is obtained from the field lines for a two-dimensional truncated wedge and is based on the union between a hyperbola and a tilted parabola. By revolution of this profile, we obtain hyperparabolic concentrators (HPCs). In the limiting case when the focal length of the hyperbola becomes the radius of the exit aperture, the HPC becomes the well-known compound parabolic concentrator. On the other hand, when the focal length of the hyperbola becomes infinite, the HPC achieves the thermodynamic limit of concentration. | |
| dc.description.department | Depto. de Óptica | |
| dc.description.faculty | Fac. de Ciencias Físicas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/26223 | |
| dc.identifier.doi | 10.1364/AO.48.000712 | |
| dc.identifier.issn | 1559-128X | |
| dc.identifier.officialurl | http://dx.doi.org/10.1364/AO.48.000712 | |
| dc.identifier.relatedurl | http://www.opticsinfobase.org | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/44294 | |
| dc.issue.number | 4 | |
| dc.journal.title | Applied Optics | |
| dc.language.iso | eng | |
| dc.page.final | 715 | |
| dc.page.initial | 712 | |
| dc.publisher | The Optical Society Of America | |
| dc.rights.accessRights | open access | |
| dc.subject.cdu | 535 | |
| dc.subject.keyword | Geometrical Vector Flux | |
| dc.subject.ucm | Óptica (Física) | |
| dc.subject.unesco | 2209.19 Óptica Física | |
| dc.title | Hyperparabolic concentrators | |
| dc.type | journal article | |
| dc.volume.number | 48 | |
| dcterms.references | 1. R. Winston, J. C. Miñano, and P. Benitez, with contributions by N. Shatz and J. C. Bortz, Nonimaging Optics (Elsevier Academic, 2005). 2. D. Jenkins, R. Winston, J. Bliss, J. O'Gallagher, A. Lewandowski, and C. Bingham, “Solar concentration of 50000 achieved with output power approaching 1 kW”, J. Sol. Energy Eng. 118, 141-145 (1996). 3. R. Winston and W. T. Welford, “Geometrical vector flux and some new nonimaging concentrators”, J. Opt. Soc. Am. 69, 532-536 (1979). 4. P. Moon and D. E. Spencer, Photic Field (Massachusetts Institute of Technology Press, 1981). 5. J. O'Gallagher and R. Winston, “Test of a trumpet secondary concentrator with a paraboloidal dish primary”, Sol. Energy 36, 37-44 (1986). 6. Garcia-Botella, A. A. Fernandez-Balbuean, D. Vázquez, and E. Bernabeu, “Ideal 3D asymmetric concentrator”, Sol. Energy 83, 113-117 (2009). 7. R. Winston and W. T. Welford, “Ideal flux concentrators as shapes that do not disturb the geometrical vector flux field: a new derivation of the compound parabolic concentrator”, J. Opt. Soc. Am. 69, 536-539 (1979). 8. P. Greenman, “Geometrical vector flux sinks and ideal flux concentrators”, J. Opt. Soc. Am. 71, 777-779 (1981). 9. Garcia-Botella, A. A. Fernanndez-Balbuena, and E. Bernabeu, “Elliptical concentrators”, Appl. Opt. 45, 7622-7627 (2006). 10. Tracepro software, http://www.lambdares.com/. 11. R. L. Garwin, “The design of liquid scintillation cells”, Rev. Sci. Instrum. 23, 755-757 (1952). | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 66947707-bb8e-476d-8178-cd98a8796992 | |
| relation.isAuthorOfPublication | 304d36ea-328b-4b93-843f-a5f0da3323f8 | |
| relation.isAuthorOfPublication | 8f013df5-4042-4b99-b639-1176bcb4d4ce | |
| relation.isAuthorOfPublication.latestForDiscovery | 66947707-bb8e-476d-8178-cd98a8796992 |
Download
Original bundle
1 - 1 of 1


