Regularized phase tracking technique for demodulation of isochromatics from a single tricolour image
dc.contributor.author | Quiroga Mellado, Juan Antonio | |
dc.contributor.author | Servín Guirado, Manuel | |
dc.contributor.author | Marroquín Zaleta, José Luis | |
dc.date.accessioned | 2023-06-20T18:51:15Z | |
dc.date.available | 2023-06-20T18:51:15Z | |
dc.date.issued | 2002-01 | |
dc.description | © 2002 IOP Publishing Ltd. We wish to thank the European Union, project INDUCE, BRPR-CT97-0805, for financial support of this work. MS and JLM were supported in part by grants from Conacyt, México. | |
dc.description.abstract | In this work we propose a robust fringe demodulation technique applied to the analysis of tricolour isochromatic fringe patterns produced in photoelasticity. The method used is a regularized phase tracking (RPT) algorithm, which takes into account the different information contained in the three bands of the colour image obtained with an RGB-CCD camera. Automatic determination of the zero-order isochromatic and the area of interest, the use of a discrete fluorescent illumination and the use of the RPT configures a robust method for automatic demodulation of isochromatic fringe patterns. The performance of the method is discussed and experimental results are presented. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | European Union | |
dc.description.sponsorship | Consejo Nacional de Ciencia y Tecnología, CONACYT. México | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/23130 | |
dc.identifier.doi | 10.1088/0957-0233/13/1/317 | |
dc.identifier.issn | 0957-0233 | |
dc.identifier.officialurl | http://dx.doi.org/10.1088/0957-0233/13/1/317 | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58781 | |
dc.issue.number | 1 | |
dc.journal.title | Measurement Science and Technology | |
dc.language.iso | eng | |
dc.page.final | 140 | |
dc.page.initial | 132 | |
dc.publisher | IOP Publishing Ltd. | |
dc.relation.projectID | INDUCE | |
dc.relation.projectID | BRPR-CT97-0805 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Photoelasticity | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Regularized phase tracking technique for demodulation of isochromatics from a single tricolour image | |
dc.type | journal article | |
dc.volume.number | 13 | |
dcterms.references | [1] Buckberry C and Towers D 1995 Automatic analysis of isochromatic and isoclinic fringes in photoelasticity using phase-measuring techniques Meas. Sci. Technol. 6 1227–35. [2] Morimoto Y, Morimoto Y and Hayashi T 1994 Separation of isochromatics and isoclinics using Fourier transform Exp. Tech. September/October 13–17. [3] Carazo-Alvarez J, Haake S J and Patterson E A 1994 Completely automated photoelastic fringe analysis Opt. Lasers Eng. 21, 133–49. [4] Yoneyama S, Shimizu M, Gotoh J and Takashi M 1998 Photoelastic analysis with a single tricolor image Opt. Lasers Eng. 29 423–35. [5] Ajovalasit A, Barone S and Petrucci G 1995 Towards RGB photoelasticity: fullfield automated photoelasticity in white light Exp. Mech. September 193–200. [6] Ekman M J and Nurse A D 1998 Completely automated determination of two-dimensional photoelastic parameters using load stepping Opt. Eng. 37 1845–51. [7] Quiroga J A and González-Cano A 2000 Separation of isoclinics and isochromatics from photoelastic data using a regularized phase-tracking technique Appl. Opt. 39 2931–40. [8] Marroquín J L, Rivera M, Botello S, Rodríguez-Vera R and Servín M 1999 Regularization methods for processing fringe-patterns images Appl. Opt. 38 788–94. [9] Servín M and Quiroga J A 2001 Isochromatics demodulation from a single image using a regularized phase tracking technique J. Mod. Opt. 48 521–31. [10] Servín M, Marroquín J L and Cuevas F J 1997 Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique Appl. Opt. 36 4540–8. [11] Ströbel B 1996 Processing of interferometric phase maps as complex-valued phasor images Appl. Opt. 35 2192–8. [12] Villa J, Quiroga J A and Servín M 2000 Improved regularized phase-tracking technique for the processing of squared grating deflectograms Appl. Opt. 39 502–8. [13] Quiroga a J A and González-Cano A 2000 Separation of isoclinics and isochromatics from photoelastic data using a regularized phase-tracking technique Appl. Opt. 39 2931–40. [14] Servín M, Marroquín J L and Cuevas F J 2001 A robust strategy for demodulation of closed fringe interferograms using a regularized phase tracking system J. Opt. Soc. Am. A 18 689–95. [15] Theocaris P S and Gdoutos E E 1979 Matrix Methods in Photoelasticity (Berlin: Springer). [16] Quiroga J A and González-Cano A 1997 Phase measuring algorithm for extraction of isochromatics of photoelastic fringe patterns Appl. Opt. 36 8397–402. [17] Ng T W, Sajan M R and Asundi A 1997 Photoelastic illumination by using cathode-ray-tube displays Appl. Opt. 36 3601–85. [18] Asundi A and Sajan M R 1995 Multiple LED camera for dynamic photoelasticity Appl. Opt.34 2236–40. [19] Quiroga J A, Gómez-Pedrero J A and García-Botella A 2001 Algorithm for fringe pattern normalization Opt. Commun. 197 43–51. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1c171089-8e25-448f-bcce-28d030f8f43a | |
relation.isAuthorOfPublication.latestForDiscovery | 1c171089-8e25-448f-bcce-28d030f8f43a |
Download
Original bundle
1 - 1 of 1