Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multiplication by a finite Blaschke product on weighted Bergman spaces: Commutant and reducing subspaces

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

We provide a characterization of the commutant of analytic Toeplitz operators TB induced by finite Blachke products B acting on weighted Bergman spaces which, as a particular instance, yields the case B(z) = z n on the Bergman space solved recently by by Abkar, Cao and Zhu [2]. Moreover, it extends previous results by Cowen and Wahl in this context and applies to other Banach spaces of analytic functions such as Hardy spaces Hp for 1 < p < ∞. Finally, we apply this approach to study reducing subspaces of TB in the classical Bergman space. As a particular instance, we provide a direct proof of a theorem of Hu, Sun, Xu and Yu [18] which states that every analytic Toeplitz operator TB induced by a finite Blachke product on the Bergman space is reducible and the restriction of TB on a reducing subspace is unitarily equivalent to the Bergman shift.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections