Defect identification in monolayer MoTe2 through tunneling tip-induced charging and theoretical analysis

dc.contributor.authorCasado Aguilar, Pablo
dc.contributor.authorPisarra, Michele
dc.contributor.authorCalleja, Fabian
dc.contributor.authorDíaz Blanco, Cristina
dc.contributor.authorMartín García, Fernando
dc.contributor.authorLopez Vazquez De Parga, Amadeo
dc.contributor.authorGarnica, Manuela
dc.date.accessioned2025-09-19T09:04:54Z
dc.date.available2025-09-19T09:04:54Z
dc.date.issued2025-08-03
dc.description.abstractDefects in transition metal dichalcogenides (TMDs) are pivotal in modulating their electronic, optical, and catalytic properties. Investigating these defects is essential for advancing both fundamental knowledge and practical applications. In this study, we examine the individual defects in a monolayer of MoTe2 supported on graphene grown on an Ir(111) substrate by means of scanning tunneling microscopy (STM). Charging rings appear at distinct bias voltages, revealing ionization levels of doping centers located either below or above the Fermi level. Although direct STM visualization of point defects was not achieved, the combination of scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations enabled the identification of the structural origins of the charge states. Our results demonstrate a powerful tool for uncovering the electronic and structural characteristics of atomic-scale defects in MoTe2, contributing to the understanding of defect-driven electronic properties in transition metal dichalcogenides.
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades
dc.description.sponsorshipUnión Europea
dc.description.statuspub
dc.identifier.citationP. Casado, M. Pisarra, F. Calleja, C. Díaz, F. Martín, A. L. Vázquez de Parga and M. Garnica. Nanoscale Adv., 2025, 7, 5637–5645
dc.identifier.doi10.1039/d5na00501a
dc.identifier.officialurlhttps://doi.org/10.1039/D5NA00501A
dc.identifier.relatedurlhttps://pubs.rsc.org/en/content/articlelanding/2025/na/d5na00501a
dc.identifier.urihttps://hdl.handle.net/20.500.14352/124135
dc.journal.titleNanoscale Advances
dc.language.isoeng
dc.page.final5645
dc.page.initial5637
dc.publisherRoyal Society of Chemistry
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096955-B-C44/ES/SIESTA Y SU INTEROPERABILIDAD PARA LOS NUEVOS RETOS EN SIMULACIONES ATOMISTICAS (SIESTA-CSIC)/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-128011NB-I00/ES/CARACTERIZACION DE EXCITACIONES OPTICAS EN MATERIALES 2D CON RESOLUCION ATOMICA/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138288NB-C31/ES/DINAMICA ULTRARRAPIDA EN MOLECULAS IONIZADAS Y MATERIALES BIDIMENSIONALES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138288NB-C33/ES/DINAMICA DE MOLECULAS INTERACCIONANDO CON SUSTRATOS SOLIDOS/
dc.relation.projectIDCEX2020-001039-S
dc.relation.projectIDCEX2018-000805-M
dc.relation.projectIDCNS2022-135175
dc.relation.projectIDRYC2020-029317-I
dc.rights.accessRightsopen access
dc.subject.cdu544
dc.subject.keywordMetal dichalcogenides, STM-STS, DFT
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleDefect identification in monolayer MoTe2 through tunneling tip-induced charging and theoretical analysis
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number7
dspace.entity.typePublication
relation.isAuthorOfPublication340a9e67-3487-41f5-a6e1-fbd2be739b26
relation.isAuthorOfPublication.latestForDiscovery340a9e67-3487-41f5-a6e1-fbd2be739b26

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanoscale_Adv_7_5637_2025.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format

Collections