Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stability of local quantum dissipative systems

dc.contributor.authorCubitt, Toby S.
dc.contributor.authorLucia, Angelo
dc.contributor.authorMichalakis, Spyridon
dc.contributor.authorPérez García, David
dc.date.accessioned2023-06-18T05:40:28Z
dc.date.available2023-06-18T05:40:28Z
dc.date.issued2015-08-29
dc.description.abstractOpen quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are potentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time which scales logarithmically with the system size. The proof relies on Lieb-Robinson bounds, which describe a finite group velocity for propagation of information in local systems. As a main example, we prove that classical Glauber dynamics is stable under local perturbations, including perturbations in the transition rates which may not preserve detailed balance.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipEuropean CHIST-ERA
dc.description.sponsorshipGordon and Betty Moore Foundation
dc.description.sponsorshipAFOSR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27982
dc.identifier.doi10.1007/s00220-015-2355-3
dc.identifier.issn0010-3616
dc.identifier.relatedurlhttp://arxiv.org/abs/1303.4744v3
dc.identifier.urihttps://hdl.handle.net/20.500.14352/22975
dc.issue.number3
dc.journal.titleCommunications in Mathematical Physics
dc.language.isoeng
dc.page.final1315
dc.page.initial1275
dc.publisherSpringer
dc.relation.projectIDQUITEMAD-CM (S2009/ESP-1594)
dc.relation.projectID(MTM2011-26912)
dc.relation.projectID(BES-2012-052404)
dc.relation.projectID(CQC)
dc.relation.projectID(GBMF1250)
dc.relation.projectID(FA8750-12-2-0308)
dc.rights.accessRightsrestricted access
dc.subject.cdu530.145
dc.subject.keywordDETAILED BALANCE
dc.subject.keywordTHERMODYNAMICAL STABILITY
dc.subject.keywordDYNAMICAL SEMIGROUPS
dc.subject.keywordLATTICE SYSTEMS
dc.subject.keywordKMS CONDITIONS
dc.subject.keywordTRAPPED IONS
dc.subject.keywordCOMPUTATION
dc.subject.keywordHYPERCONTRACTIVITY
dc.subject.keywordSIMULATIONS
dc.subject.keywordANYONS
dc.subject.ucmTeoría de los quanta
dc.subject.unesco2210.23 Teoría Cuántica
dc.titleStability of local quantum dissipative systems
dc.typejournal article
dc.volume.number337
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Cubitt Stability.pdf
Size:
718.28 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Perez García206oficial.pdf
Size:
997.21 KB
Format:
Adobe Portable Document Format

Collections