Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Prioritization of Candidate Biomarkers for Degenerative Aortic Stenosis through a Systems Biology-Based In-Silico Approach

dc.contributor.authorCorbacho Alonso, Nerea
dc.contributor.authorSastre Oliva, Tamara
dc.contributor.authorCorros, Cecilia
dc.contributor.authorTejerina, Teresa
dc.contributor.authorSolis, Jorge
dc.contributor.authorLópez Almodovar, Luis F.
dc.contributor.authorPadial, Luis R.
dc.contributor.authorMouriño Álvarez, Laura
dc.contributor.authorBarderas, María G.
dc.date.accessioned2023-06-22T10:49:23Z
dc.date.available2023-06-22T10:49:23Z
dc.date.issued2022-04-15
dc.description.abstractDegenerative aortic stenosis is the most common valve disease in the elderly and is usually confirmed at an advanced stage when the only treatment is surgery. This work is focused on the study of previously defined biomarkers through systems biology and artificial neuronal networks to understand their potential role within aortic stenosis. The goal was generating a molecular panel of biomarkers to ensure an accurate diagnosis, risk stratification, and follow-up of aortic stenosis patients. We used in silico studies to combine and re-analyze the results of our previous studies and, with information from multiple databases, established a mathematical model. After this, we prioritized two proteins related to endoplasmic reticulum stress, thrombospondin-1 and endoplasmin, which have not been previously validated as markers for aortic stenosis, and analyzed them in a cell model and in plasma from human subjects. Large-scale bioinformatics tools allow us to extract the most significant results after using high throughput analytical techniques. Our results could help to prevent the development of aortic stenosis and open the possibility of a future strategy based on more specific therapies.
dc.description.departmentDepto. de Farmacología y Toxicología
dc.description.departmentDepto. de Medicina
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.sponsorshipInstituto de Salud Carlos III (ISCIII)/ FEDER
dc.description.sponsorshipSociedad Española de Cardiología, 2020
dc.description.sponsorshipJunta de Comunidades de Castilla-La Mancha/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73358
dc.identifier.doi10.3390/jpm12040642
dc.identifier.issn2075-4426
dc.identifier.officialurlhttps://doi.org/10.3390/jpm12040642
dc.identifier.relatedurlhttps://www.mdpi.com/2075-4426/12/4/642
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71730
dc.issue.number4
dc.journal.titleJournal of Personalized Medicine
dc.language.isoeng
dc.page.initial642
dc.publisherMPDI
dc.relation.projectIDPI18/00995, PI21/00384
dc.relation.projectIDPRB3 (IPT17/0019—ISCIII-SGEFI/ERDF)
dc.relation.projectIDSBPLY/19/180501/000226
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordaortic valve
dc.subject.keywordbiomarkers
dc.subject.keywordendoplasmic reticulum
dc.subject.keywordin silico models
dc.subject.keywordsystems biology
dc.subject.ucmCardiología
dc.subject.ucmDiagnóstico por imagen y medicina nuclear
dc.subject.unesco3205.01 Cardiología
dc.subject.unesco3204.01 Medicina Nuclear
dc.titlePrioritization of Candidate Biomarkers for Degenerative Aortic Stenosis through a Systems Biology-Based In-Silico Approach
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jpm-12-00642.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format

Collections