Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Extinction properties of semilinear heat-equations with strong absorption

dc.contributor.authorFriedman, Avner
dc.contributor.authorHerrero, Miguel A.
dc.date.accessioned2023-06-20T17:06:32Z
dc.date.available2023-06-20T17:06:32Z
dc.date.issued1987-06
dc.description.abstractConsider the initial-boundary value problem for ut=Δu-λu(q) with λ>0, 0<q<1; the initial data are nonnegative and the boundary data vanish. It is well known that the solution becomes extinct in finite time Τ, i.e., u(x, t) becomes identically zero for t ≥ T, where T is some positive number. In this paper we study the profile of x → u(x, t) as t → T.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipU.S.-Spain Joint Committee for Scientific and Technical Cooperation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17584
dc.identifier.doi10.1016/0022-247X(87)90013-8
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0022247X87900138
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57783
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final546
dc.page.initial530
dc.publisherElsevier
dc.relation.projectIDDMS-8420896
dc.relation.projectIDDMS-8501397
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.cdu517.9
dc.subject.keywordSemilinear
dc.subject.keywordstrong absorption
dc.subject.keywordinitial-boundary value problem
dc.subject.keywordinitial data
dc.subject.keywordnonnegative
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleExtinction properties of semilinear heat-equations with strong absorption
dc.typejournal article
dc.volume.number124
dcterms.referencesD. G. ARONSON, Regularity properties of flows through porous media, SIAM J. Appl.Math. 17 (1969), 461-467. H. BREZIS AND A. FRIEDMAN, Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math. 20 (1976) 82-98. H. BREZIS AND A. FRIEDMAN, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. 62 (1983) 73-97. L. A. CAFFARELLI AND A. FRIEDMAN, Blow-up of solutions of nonlinear heat equations, J. Math. Anal. Appl., in press. L. C. EVANS AND B. F. KNERR, Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities, Illinois J. Math. 23 (1979) 153-166. A. FRIEDMAN, “Partial Differential Equations of Parabolic Type,” Krieger, Malabar, Fla., 1983. A. FRIEDMAN AND B. MCLEOD, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447. J. FUJITA, On the blowing up of solutions of the Cauchy problem for ut = Δu + u(1+x), J. Fac. Sci. Univ Tokyo Sect. J 13 (1966) 109-124. Y. GIGA AND R. KOHN, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985) 297-319. A. GMIRA AND L. VERON, Large time behavior of solutions of a semilinear problem in R(N), J. Differential Equations 53 (1984) 258-276. A. S. KALASHNIKOV, The propagation of disturbances in problems of nonlinear heat conduction with absorption, USSR Comp. Math Math. Phys 14, 70-85. A. S. KALASHNIKOV, On the differential properties of generalized solutions of nonstationary filtration type, Vestnick Moscow Univ. Math 29 (1974) 62-68. S. KAMIN AND L. A. PELETIER, Large time behavior of the heat equation with absorption, Ann. Scuola Norm. Sup. Pisa 12 (1985), 393-408. L. L. MARTINSON, The finite velocity of propagation of thermal perturbations in media with constant thermal conductivity, Zh. Vychisl. Mat. i Mat. Fiz 16 (1976), 1233-1241. F. B. WEISLER, Single point blow-up for a semilinear initial value problem, J. Differential Equations 55 (1984), 204-224.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero58.pdf
Size:
621.11 KB
Format:
Adobe Portable Document Format

Collections