Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Characteristically nilpotent Lie algebras of type g 1 × − − g 2

dc.contributor.authorAncochea Bermúdez, José María
dc.contributor.authorCampoamor Stursberg, Otto-Rudwig
dc.date.accessioned2023-06-20T10:34:13Z
dc.date.available2023-06-20T10:34:13Z
dc.date.issued2003
dc.description.abstractA finite-dimensional complex Lie algebra g is characteristically nilpotent if its Lie algebra Derk(g) of derivations is nilpotent. Given two finite-dimensional nilpotent Lie algebras g1, g2, the authors construct a non-split central extension g1 × g2 of g1 g2 by a space of dimension (dim g1/[g1, g1])(dim g2/[g2, g2]). The main result of the paper provides a sufficient condition for the characteristic nilpotence of g1 × g2en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20837
dc.identifier.doi10.1515/form.2003.017
dc.identifier.issn0933-7741
dc.identifier.officialurlhttps//doi.org/10.1515/form.2003.017
dc.identifier.relatedurlhttp://www.degruyter.com/view/j/form.2003.15.issue-2/form.2003.017/form.2003.017.xml
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50577
dc.issue.number2
dc.journal.titleForum Mathematicum
dc.page.final307
dc.page.initial299
dc.publisherWALTER DE GRUYTER
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.554.3
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleCharacteristically nilpotent Lie algebras of type g 1 × − − g 2en
dc.typejournal article
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublication8afd7745-e428-4a77-b1ff-813045b673fd
relation.isAuthorOfPublication72801982-9f3c-4db0-b765-6e7b4aa2221b
relation.isAuthorOfPublication.latestForDiscovery8afd7745-e428-4a77-b1ff-813045b673fd

Download

Collections