Characteristically nilpotent Lie algebras of type g 1 × − − g 2
dc.contributor.author | Ancochea Bermúdez, José María | |
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.date.accessioned | 2023-06-20T10:34:13Z | |
dc.date.available | 2023-06-20T10:34:13Z | |
dc.date.issued | 2003 | |
dc.description.abstract | A finite-dimensional complex Lie algebra g is characteristically nilpotent if its Lie algebra Derk(g) of derivations is nilpotent. Given two finite-dimensional nilpotent Lie algebras g1, g2, the authors construct a non-split central extension g1 × g2 of g1 g2 by a space of dimension (dim g1/[g1, g1])(dim g2/[g2, g2]). The main result of the paper provides a sufficient condition for the characteristic nilpotence of g1 × g2 | en |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20837 | |
dc.identifier.doi | 10.1515/form.2003.017 | |
dc.identifier.issn | 0933-7741 | |
dc.identifier.officialurl | https//doi.org/10.1515/form.2003.017 | |
dc.identifier.relatedurl | http://www.degruyter.com/view/j/form.2003.15.issue-2/form.2003.017/form.2003.017.xml | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50577 | |
dc.issue.number | 2 | |
dc.journal.title | Forum Mathematicum | |
dc.page.final | 307 | |
dc.page.initial | 299 | |
dc.publisher | WALTER DE GRUYTER | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 512.554.3 | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Characteristically nilpotent Lie algebras of type g 1 × − − g 2 | en |
dc.type | journal article | |
dc.volume.number | 15 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8afd7745-e428-4a77-b1ff-813045b673fd | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 8afd7745-e428-4a77-b1ff-813045b673fd |