On spaces of vector-valued continuous functions

dc.contributor.authorMendoza Casas, José
dc.date.accessioned2023-06-21T02:02:32Z
dc.date.available2023-06-21T02:02:32Z
dc.date.issued1983
dc.description.abstractLet X be a Hausdorff completely regular space and E be a Hausdorff locally convex topological vector space. Then C(X;E) denotes the linear space of the continuous functions on X, with values in E. Previously [C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A596-A598; MR0271712 (42 #6593)], L. Nachbin introduced the topologies τω|A, τλ|A and τδ|A, where A is a subspace of C(X;E). In this paper, the author studies the case when A is a Cb(X)-submodule of C(X;E) (Cb(X) is the linear space of bounded continuous functions on X). He proves that in this case the topologies τω|A and τλ|A coincide with the compact-open topology, and that the topology τδ|A coincides with the compact-open topology coming from the repletion (= realcompactification) of X.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16890
dc.identifier.issn0007-4497
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64685
dc.issue.number2
dc.journal.titleBulletin des sciences Mathematiques
dc.page.final192
dc.page.initial177
dc.publisherElsevier Sci.
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.98
dc.subject.keywordNachbin topologies
dc.subject.keywordspace of vector valued continuous functions
dc.subject.keywordcompact- open topology
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleOn spaces of vector-valued continuous functions
dc.typejournal article
dc.volume.number107
dspace.entity.typePublication
relation.isAuthorOfPublication3fdf00ed-ed02-482c-a736-bb87c2753a89
relation.isAuthorOfPublication.latestForDiscovery3fdf00ed-ed02-482c-a736-bb87c2753a89

Download

Collections