Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An 8-dimensional nonformal, simply connected, symplectic manifold.

dc.contributor.authorFernandez, Marisa
dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-20T09:41:43Z
dc.date.available2023-06-20T09:41:43Z
dc.date.issued2008
dc.description.abstractWe answer in the affirmative the question posed by Babenko, and Taimanov [3] on the existence of nonformal, simply connected, compact symplectic manifolds of dimension 8.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17139
dc.identifier.doi10.4007/annals.2008.167.1045
dc.identifier.issn0003-486X
dc.identifier.officialurlhttp://annals.math.princeton.edu/wp-content/uploads/annals-v167-n3-p08.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50198
dc.issue.number3
dc.journal.titleAnnals of Mathematics
dc.language.isoeng
dc.page.final1054
dc.page.initial1045
dc.publisherPrinceton University
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.keywordNonformal symplectic manifold
dc.subject.keywordDesingularisation process
dc.subject.ucmTopología
dc.subject.ucmGeometría
dc.subject.unesco1210 Topología
dc.subject.unesco1204 Geometría
dc.titleAn 8-dimensional nonformal, simply connected, symplectic manifold.
dc.typejournal article
dc.volume.number167
dcterms.referencesI. K. Babenko and I. A. Taimanov, On the formality problem for symplectic manifolds,Contemp. Math. 288 (2001), 1–9. On existence of nonformal simply connected symplectic manifolds, Russ. Math.Surv. 53 (1998), 1082–1083. On nonformal simply connected symplectic manifolds, Siberian Math. J. 41 (2000), 204–217. W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag,New York, 1984. G. Bredon, Introduction to Compact Transformation Groups, G. R. Cavalcanti, Formality of k-connected spaces in 4k + 3 and 4k + 4 dimensions, Math. Proc. Cambridge Philos. Soc.141 (2006), 101–112. The Lefschetz property, formality and blowing up in symplectic geometry,Trans. Amer. Math. Soc. 359 (2007), 333–P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kahler manifolds, Invent. Math. 29 (1975), 245–274. A. Dranishnikov and Y. Rudyak, Examples of nonformal closed (k −1)-connected manifolds of dimensions 4k − 1 and more, Proc. Amer. Math. Soc. 133 (2005), 1557–1561. M. Fernandez and V. Mu˜noz, On nonformal simply connected manifolds, Topol. Appl.135 (2004), 111–117. Formality of Donaldson submanifolds, Math. Zeit. 250 (2005), 149–175. Non-formal compact manifolds with small Betti numbers, Proc. Conf. Contemporary Geometry and Related Topics (Belgrade 2005), Public. Faculty of Math.,University of Belgrade (2006), 231–246. D. Guan, Examples of compact holomorphic symplectic manifolds which are not Kahlerian II, Invent. Math. 121 (1995), 135–145. R. Ibañez, Y. Rudyak, A. Tralle, and L. Ugarte, On certain geometric and homotopy properties of closed symplectic manifolds, Topol. Appl. 127 (2002), 33–45. G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193–207. D. McDuff, Examples of symplectic simply connected manifolds with no Kahler structure,J. Differential Geom. 20 (1984), 267–277. D. McDuff and D. Salamon, Introduction to Symplectic Geometry, second edition, Oxford Math. Monographs,Clarendon Press, Oxford, 1998. J. Neisendorfer and T. J. Miller, Formal and coformal spaces. Illinois J. Math. 22 (1978), 565–580. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups,Ann. of Math. 59 (1954), 531–538. J. Oprea, The Samelson space of a fibration, Mich. Math. J. 34 (1987), 127–141. Y. Rudyak and A. Tralle, On Thom spaces, Massey products and nonformal symplectic manifolds, Internat. Math. Res. Notices 10 (2000), 495–513. A. Tralle and J. Oprea, Symplectic manifolds with no Kahler structure, Lecture Notes in Math. 1661, Springer-Verlag, New York, 1997.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz13.pdf
Size:
156.8 KB
Format:
Adobe Portable Document Format

Collections