Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Mechanical characterisation of virgin and recovered polycarbonate based nanocomposites by means of Depth Sensing Indentation measurements

dc.contributor.authorLorenzo Esteban, Vicente
dc.contributor.authorOrden Hernández, María Ulagares De La
dc.contributor.authorMuñoz San Martín, Cristina
dc.contributor.authorSerrano, Cristina
dc.contributor.authorMartínez Urreaga, Joaquín
dc.date.accessioned2023-06-19T13:34:35Z
dc.date.available2023-06-19T13:34:35Z
dc.date.issued2014-06
dc.description.abstractThe preparation of recovered polycarbonate matrix nanocomposites filled with organic modified montmorillonites has been considered as a method for the secondary or mechanical recycling of these polymeric wastes. The mechanical properties of these nanocomposites have been evaluated by means of Depth Sensing Indentation measurements. The selection of the measurement conditions has been discussed and a method to evaluate the heterogeneity of these materials has been presented. It has been found that greater nanoclay contents do not always lead to increase in mechanical properties. This fact has been explained in terms of the competition between the reinforcement effect of the nanofiller and the thermal and mechanical degradation that experiments the matrix during the melt processing. This result provide a limit for the clay addition in the mechanical recovery of polycarbonate wastes.
dc.description.departmentSección Deptal. de Química Orgánica (Óptica y Optometría)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipCátedra Repsol UPM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29907
dc.identifier.doi10.1016/j.eurpolymj.2014.03.015
dc.identifier.issn0014-3057
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.eurpolymj.2014.03.015
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34052
dc.issue.number1
dc.journal.titleEuropean Polymer Journal
dc.language.isoeng
dc.page.final8
dc.page.initial1
dc.publisherElsevier Limited
dc.relation.projectIDMAT2010-19883
dc.relation.projectIDCCG10-UPM/MAT-5569
dc.rights.accessRightsrestricted access
dc.subject.cdu54-126
dc.subject.cdu678.7
dc.subject.keywordRecovered polycarbonate
dc.subject.keywordNanocomposites
dc.subject.keywordDepth Sensing Indentation
dc.subject.keywordThermal and mechanical degradation
dc.subject.keywordPolymer matrix composites
dc.subject.ucmIndustria del plástico
dc.subject.ucmQuímica industrial
dc.subject.ucmQuímica orgánica (Química)
dc.subject.unesco3312.10 Plásticos
dc.subject.unesco2306 Química Orgánica
dc.titleMechanical characterisation of virgin and recovered polycarbonate based nanocomposites by means of Depth Sensing Indentation measurements
dc.typejournal article
dc.volume.number55
dcterms.references[1] Antonakou E, Achilias D. Recent advances in polycarbonate recycling: a review of degradation methods and their mechanisms. Waste Biomass Valorization 2012;3:1. [2] Eguizabal JI, Nazabal J. Effect of reprocessing on the properties of bisphenol-A polycarbonate. Eur Polym J 1989;25:891. [3] Liu ZQ, Cunha AM, Yi XS, Bernardo AC. Key properties to understand the performance of polycarbonate reprocessed by injection molding. J Appl Polym Sci 2000;77:1393. [4] Feller JF, Bourmaud A. Rheological and calorimetric properties of recycled bisphenol A poly(carbonate). Polym Degrad Stab 2003;82:99. [5] Pérez JM, Vilas JL, Laza JM, Arnáiz S, Mijangos F, Bilbao E, et al. Effect of reprocessing and accelerated ageing on thermal and mechanical polycarbonate properties. J Mater Process Technol 2010;210:727. [6] de la Orden MU, Pascual D, Antelo A, Arranz J, Lorenzo V, Martínez Urreaga J. Polymer degradation during the melt processing of clay reinforced polycarbonate nanocomposites. J Polym Degrad Stab 2013;98:1110. [7] Saraiva Sanchez EM. Ageing of PC/PBT blend: mechanical properties and recycling possibility. Polym Test 2007;26:378. [8] Elmaghor F, Zhang L, Fan R, Li H. Recycling of polycarbonate by blending with maleic anhydride grafted ABS. Polymer 2004;45:6719. [9] Zicans J, MerijsMeri R, Ivanova T, Berzina R, Kalkis V, Maksimov R. Recycled polycarbonate blend as matrix for development of polymer nanocomposite. Macromol Symp 2012;321–322:221. [10] de la Orden MU, Lorenzo V, Muñoz C, Serrano C, Martínez Urreaga J. Recycling of waste polycarbonate by using organo-montmorillonites for obtain nanocomposites with good mechanical and thermal properties. In: Proceedings of ATHENS 2012 international conference on solid waste management <http://uest.ntua.gr/athens2012/uploads/athens2012.iso>. [11] Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R 2006;53:73. [12] Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer 2008;49:3187. [13] Pavlidou S, Papaspyrides CD. A review on polymer–layered silicate nanocomposites. Prog Polym Sci 2008;33:1119. [14] Lorenzo V, Pereña JM. Microhardness, a non-destructive test applied to polymers. Curr Trends Polym Sci 1999;4:65. [15] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7:1564. [16] Fischer-Cripps AC. Nanoindentation. 3rd. ed. Springer; 2011. [17] Briscoe BJ, Fiori L, Pelillo E. Nano-indentation of polymeric surfaces. J Phys D: Appl Phys 1998;31:2395. [18] Lu H, Wang B, Huang G, Viswanathan H. Measurement of creep compliance of solid polymers by nanoindentation. Mech TimeDepend Mater 2003;7:189. [19] Fischer-Cripps AC. A simple phenomenological approach to nanoindentation creep. Mater Sci Eng, A 2004;385:74. [20] Oyen ML. Spherical indentation creep following ramp loading. J Mater Res 2005;20:2094. [21] Maxwell A, Monclus M, Jennett N, Dean G. Accelerated testing of creep in polymeric materials using nanoindentation. Polym Test 2011;30:366. [22] Uzun O, Basman N, Alkan C, Kölemen U, Yılmaz F. Investigation of mechanical and creep properties of polypyrrole by depth-sensing indentation. Polym Bull 2011;66:649. [23] Stan F, Fetecau C. Characterization of viscoelastic properties of molybdenum disulphide filled polyamide by indentation. Mech Time-Depend Mater 2012. http://dx.doi.org/10.1007/s11043-012-9198-5. [24] Kurata M, Tsunashima Y. In: Brandrup J, Immergut EH, Grulke EA, editors. Polymer handbook. New York: Wiley-Interscience; 2003. [25] Hsieh AJ, Moy P, Beyer FL, Madison P, Napadensky E, Ren J, et al. Mechanical response and rheological properties of polycarbonate layered-silicate nanocomposites. Polym Eng Sci 2004;44:825. [26] Carrión FJ, Arribas A, Bermúdez MD, Guillamon A. Physical and tribological properties of a new polycarbonate–organoclay nanocomposite. Eur Polym J 2008;44:968. [27] Nevalainen K, Vuorinen J, Villman V, Suihkonen R, Järvelä P, Sundelin J, et al. Characterization of twin-screw-extruder-compounded polycarbonate nanoclay composites. Polym Eng Sci 2009;49:631. [28] ISO 14577-1. Metallic materials – instrumented indentation test for hardness and materials parameters – Part 1: Test method; 2002. [29] Ngan AHW, Tang B. Viscoelastic effects during unloading in depthsensing indentation. J Mater Res 2002;17:2604. [30] Tang B, Ngan AHW. Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. J Mater Res 2003;18:1141. [31] Christensen RM. Theory of viscoelasticity: an introduction. 2nd ed. Academic Press, Inc.; 1982. [32] Andrade ENda C. On the viscous flow in metals, and allied phenomena. Proc Roy Soc 1910;84:1. [33] Kohl JG, Singer IL, Simonson DL. Determining the viscoelastic parameters of thin elastomer based materials using continuous microindentation. Polym Test 2008;27:679. [34] Tschoegl N, Knauss WG, Emri I. Poisson’s ratio in linear viscoelasticity – a critical review. Mech Time-Depend Mater 2002;6:3. [35] Soloukhin VA, Brokken-Zijp JC, van Asselen OLJ, de With G. Physical aging of polycarbonate: elastic modulus, hardness, creep, endothermic peak, molecular weight distribution, and infrared data. Macromolecules 2003;36:7585. [36] Fischer-Cripps AC. Introduction to contact mechanics. SpringerVerlag; 2000. [37] Madkour TM. Polycarbonate in polymer data handbook. Oxford University Press; 1999 [p. 363–367]. [38] Jakes JE, Lakes RS, Stone DS. Broadband nanoindentation of glassy polymers: Part I. Viscoelasticity. J Mater Res 2012;27:463. [39] Cabibbo M, Ricci P, Cecchini R, Rymuza Z, Sullivan J, Dub S, et al. An international round-robin calibration protocol for nanoindentation measurements. Micron 2012;43:215. [40] Shen L, Tjiu WC, Liu T. Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites. Polymer 2005;46:11969. [41] Yoon PJ, Hunter DL, Paul DR. Polycarbonate nanocomposites: Part 2. Degradation and color formation. Polymer 2003;44:5341. [42] Yoon PJ, Hunter DL, Paul DR. Polycarbonate nanocomposites: Part 1. Effect of organoclay structure on morphology and properties. Polymer 2003;44:5323. [43] Nayak SK, Mohanty S, Samal SK. Mechanical and thermal properties enhancement of polycarbonate nanocomposites prepared by melt compounding J Appl Polym Sci, 117 (2010), p. 2101
dspace.entity.typePublication
relation.isAuthorOfPublication15b5eae4-7f5e-47aa-8206-9f9a04be52c4
relation.isAuthorOfPublication8ef8a354-3b10-4ce1-9125-3dcd418e5313
relation.isAuthorOfPublication.latestForDiscovery8ef8a354-3b10-4ce1-9125-3dcd418e5313

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ulagares-Mechanical characterisation 2014.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format

Collections