Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The 3/4 problem for germs of isolated plane curve singularities

dc.contributor.authorAlmirón, Patricio
dc.date.accessioned2023-06-16T14:24:58Z
dc.date.available2023-06-16T14:24:58Z
dc.date.issued2021-12-05
dc.description.abstractIn this survey we overview the different approaches and solutions of a question posed by Dimca and Greuel about the quotient of the Milnor and Tjurina numbers.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73971
dc.identifier.doi10.1007/978-3-030-84800-2_23
dc.identifier.issn2297-0215
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-030-84800-2_23
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4977
dc.journal.titleTrends in Mathematics
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDMTM2016- 76868-C2-1-P
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordCurve singularities
dc.subject.keywordTjurina number
dc.subject.keywordMilnor number
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleThe 3/4 problem for germs of isolated plane curve singularities
dc.typejournal article
dc.volume.number15
dcterms.references1. M. Alberich-Carramiñana, P. Almirón, G. Blanco and A. Melle-Hern´andez, The minimal Tjurina number of irreducible germs of plane curve singularities, To appear in Indiana UniversityMathematics Journal IUMJ/Preprints/8583 (2019). 2. P. Almirón, G. Blanco, A note on a question of Dimca and Greuel, C. R. Math. Acad. Sci. Paris, Ser. I 357 (2019), 205–208. 3. P. Almirón, On the quotient of Milnor and Tjurina numbers for two-dimensional isolated hypersurface singularities, Preprint in arxiv:1910.12843 (2019). 4. J. Brianon, M. Granger, Ph. Maisonobe, Le nombre de modules du germe de courbe plane x a+y b = 0, Math. Ann 279, (1988), 535-551. 5. A. Dimca, G.-M. Greuel, On 1-forms on isolated complete intersection on curve singularities, J. of Singul. 18 (2018), 114–118. 6. Y. Genzmer, Dimension of the moduli space of a curve in the complex plane, Preprint in: arXiv:1610.05998 (2016). 7. Y. Genzmer, M. E. Hernandes, On the Saitos basis and the Tjurina Number for Plane Branches, To appear in Transactions of the American Mathematical Society, https://doi.org/10.1090/tran/8019 (2019). 8. G.-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer Monographs in Mathematics, Berlin, 2007. 9. B. Teissier, Appendix, in [13], 1986. 10. J. Wahl, A characterization of quasihomogeneous Gorenstein surface singularities, Compositio Math. 55 (1985), no.3, 269–288. 11. C. T. C. Wall, Notes on the classification of singularities, Proc. London Math. Soc. 48 (1984), no.3, 461–513. 12. Z. Wang, Monotonic invariants under blowups, Preprint in: arxiv:1904.08588 (2019). 13. O. Zariski, Le probl´eme des modules pour les branches planes, Hermann, Paris, 1986.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
almiron_the43.pdf
Size:
92.46 KB
Format:
Adobe Portable Document Format

Collections