Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory

Loading...
Thumbnail Image

Full text at PDC

Publication date

2009

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Advances in Mathematics
Citations
Google Scholar

Citation

Lerner, Andrei K., et al. «New Maximal Functions and Multiple Weights for the Multilinear Calderón–Zygmund Theory». Advances in Mathematics, vol. 220, n.o 4, marzo de 2009, pp. 1222-64. https://doi.org/10.1016/j.aim.2008.10.014.

Abstract

A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy–Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón–Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón–Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections