Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Numerical experiments regarding the distributed control of semilinear parabolic problems

Loading...
Thumbnail Image

Full text at PDC

Publication date

2004

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science Ltd
Citations
Google Scholar

Citation

Abstract

This work deals with some numerical experiments regarding the distributed control of semilinear parabolic equations of the type y(t) - y(xx) + f (y) = u(Xw), in (0, 1) x (0, T), with Neumann and initial auxiliary conditions, where w is an open subset of (0, 1), f is a C-1 nondecreasing real function, a is the output control and T > 0 is (arbitrarily) fixed. Given a target state y(T) we study the associated approximate controllability problem (given epsilon > 0, find u is an element of L-2(0, T), such that parallel toy(T; u) - y(T)parallel to(L2(0,1)) less than or equal to epsilon) by passing to the limit (when k --> infinity) in the penalized optimal control problem. (find u(k) as the minimum of J(k)(u) = 1/2 parallel touparallel to(L2)(2) ((0,T)) + (k/2)parallel toy(T; u) -y(T)parallel to(L2)(2) ((0,1))). In the superlinear case (e.g., f (y) = \y\(n-1)y, n > 1) the existence of two obstruction functions Y+/-infinity shows that the approximate controllability is only possible if Y-infinity (x,T) +/- y(T)(x) less than or equal to Y-infinity(x,T) for a.e. x is an element of (0, 1). We carry out some numerical experiments showing that, for a fixed k, the "minimal cost" J(k)(u) (and the norm of the optimal control u(k)) for a superlinear function f becomes much larger when this condition is not satisfied. We also compare the values of J(k)(u) (and the norm of the optimal control u(k)) for a fixed y(T) associated with two nonlinearities: one sublinear and the other one superlinear.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections