Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Isoperimetric inequalities in the parabolic obstacle problems

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorMossino, J.
dc.date.accessioned2023-06-20T16:57:46Z
dc.date.available2023-06-20T16:57:46Z
dc.date.issued1992
dc.description.abstractWe are concerned with the parabolic obstacle problem ut+Au+cu≥f,u≥ψ, (ut+Au+cu−f)(u−ψ)=0inQ=(0,T)×Ω, u=ψ on Σ=(0,T)×∂Ω, u|t=0=u0 in Ω, A being a linear elliptic second-order operator in divergence form or a nonlinear `pseudo-Laplacian'. We give an isoperimetric inequality for the concentration of u−ψ around its maximum. Various consequences are given. In particular, it is proved that u−ψ vanishes after a finite time, under a suitable assumption on ψt+Aψ+cψ−f. Other applications are also given. "These results are deduced from the study of the particular case ψ=0. In this case, we prove that, among all linear second-order elliptic operators A having ellipticity constant 1, all equimeasurable domains Ω, all equimeasurable functions f and u0, the choice giving the `most concentrated' solution around its maximum is: A=−Δ, Ω is a ball Ω˜, f and u0 are radially symmetric and decreasing along the radii of Ω˜. "A crucial point in our proof is a pointwise comparison result for an auxiliary one-dimensional unilateral problem. This is carried out by showing that this new problem is well posed in L∞ in the sense of the theory of accretive operators.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16387
dc.identifier.issn0764-4442
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57523
dc.issue.number3
dc.journal.titleComptes Rendus de l'Académie des Sciences. Série I. Mathématique
dc.language.isofra
dc.page.final266
dc.page.initial233
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.577
dc.subject.keywordparabolic obstacle problem
dc.subject.keywordpseudo-Laplacian
dc.subject.keywordisoperimetric inequality
dc.subject.keywordlinear second order elliptic operators
dc.subject.keywordpointwise comparison
dc.subject.keywordaccretive operators theory
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleIsoperimetric inequalities in the parabolic obstacle problems
dc.typejournal article
dc.volume.number71
dcterms.referencesA. ALVINO, P.-L LIONS et G. TROMBETTI. Comparaison des solulions d'équations paraboliques et elliptiques par symétrisation. Une méthode nouvelle, C.R. Acad. Sci. Paris. 303, séríe 1, 1986, p. 975-978. C. BANDLE, Isoperimetric inequalities ami applications, Pitman Advanced Publishing Program, Boston,London, Melbourne, 1980. C. BANDLE et J. MOSSINO, Application du réarrangement á une inéquation variationnelle, C.R. Acad.Sci. Paris, 296, série 1, 1983, p. 501.504; Rearrangement in variational inequalities, Ann. di Mat. Pura etAppl., (IV), CXXXVIII, pl984, p. 1-14. J. I. DÍAZ, Anulacion de soluciones para operadores acretivos en espacios de Banach,Revista de la Real Acad. Sc. Ex. Madrid, 74, 1980, p. 865-880. J. I. DÍAZ et J. MOSSINO, Isoperimetric inequalílies in the parabolic obstacle problem, en préparation. J. MOSSINO, Inégalités isopérimétriques et applications en physique, Hermann, 1984. J. MOSSINO et J. M. RAKOTOSON, Isoperimetric inequalities in parabolíc equations, Ann. Sc. Norm. Sup.Pisa, série IV, XIII, n° 1, 1986, p. 51-73. J. MOSSINO et R. TEMA M, Directional derivative of the increasing rearrangement mapping, and application to a queer differential equation in plasma physics, Duke Math. J., 48, 1981, p. 475-495. G. POLYA et C. SZEGÖ, Isaperimetric inequalities in mathematical physics, Princeton University Press.1951. J.L.VAZQUEZ, Symétrisation pour u, = (u) et app1ications, C.R. Acad. Sci. Paris, 295, série I, 1982,p. 71-74 et 296, série I, 1983, p. 455.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
125.pdf
Size:
168.44 KB
Format:
Adobe Portable Document Format

Collections