Rings of differentiable semialgebraic functions

dc.contributor.authorBaro González, Elías
dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2025-09-09T11:51:19Z
dc.date.available2023-06-17T13:19:37Z
dc.date.available2025-09-09T11:51:19Z
dc.date.issued2024-07-19
dc.description.abstractIn this work we analyze the main properties of the Zariski and maximal spectra of the ring Sr(M) of differentiable semialgebraic functions of class Cr on a semialgebraic set M ⊂ Rm. Denote S0(M) the ring of semialgebraic functions on M that admit a continuous extension to an open semialgebraic neighborhood of M in Cl(M). This ring is the real closure of Sr(M). If M is locally compact, the ring Sr(M) enjoys a Łojasiewicz’s Nullstellensatz, which becomes a crucial tool. Despite Sr(M) is not real closed for r ≥ 1, the Zariski and maximal spectra of this ring are homeomorphic to the corresponding ones of the real closed ring S0(M). In addition, the quotients of Sr(M) by its prime ideals have real closed fields of fractions, so the ring Sr(M) is close to be real closed. The missing property is that the sum of two radical ideals needs not to be a radical ideal. The homeomorphism between the spectra of Sr(M) and S0(M) guarantee that all the properties of these rings that arise from spectra are the same for both rings. For instance, the ring Sr(M) is a Gelfand ring and its Krull dimension is equal to dim(M). We also show similar properties for the ring Sr∗(M) of differentiable bounded semialgebraic functions. In addition, we confront the ring S∞(M) of differentiable semialgebraic functions of class C∞ with the ring N (M) of Nash functions on M.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación, Ciencia y Deporte
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/51183
dc.identifier.citationBaro, E., Fernando, J.F. & Gamboa, J.M. Rings of differentiable semialgebraic functions. Sel. Math. New Ser. 30, 71 (2024). https://doi.org/10.1007/s00029-024-00965-z
dc.identifier.doi10.1007/s00029-024-00965-z
dc.identifier.essn1420-9020
dc.identifier.issn1022-1824
dc.identifier.officialurlhttps://doi.org/10.1007/s00029-024-00965-z
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s00029-024-00965-z
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13084.2
dc.journal.titleSelecta Mathematica
dc.language.isoeng
dc.page.initial71
dc.publisherSpringer Nature
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//MTM2014-55565-P/ES/GEOMETRIA REAL Y APLICACIONES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-82105-P/ES/ESTRUCTURAS ALGEBRAICAS, ANALITICAS Y O-MINIMALES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122752NB-I00/ES/ESTRUCTURAS ALGEBRAICAS, ANALITICAS Y O-MINIMALES/
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.keywordDifferentiable semialgebraic function of class r
dc.subject.keywordZariski and maximal spectra
dc.subject.keywordReal closed field
dc.subject.keywordReal closed ring
dc.subject.keywordReal closure
dc.subject.keywordŁojasiewicz’s Nullstellensatz
dc.subject.keywordNash functions
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmÁlgebra
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco12 Matemáticas
dc.subject.unesco1201 Álgebra
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleRings of differentiable semialgebraic functions
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number30
dspace.entity.typePublication
relation.isAuthorOfPublication8695b08a-762f-4ef9-ad24-b6fe687ab7cd
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8695b08a-762f-4ef9-ad24-b6fe687ab7cd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Selecta Matematica 2024_30_71 .pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format

Collections

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2025-09-09 11:08:51
Versión publicada
2023-06-17 15:19:37
Versión preprint
* Selected version