Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

The asymptotic values of a polynomial function on the real plane.

dc.contributor.authorFerrera Cuesta, Juan
dc.contributor.authorPuente Muñoz, María Jesús De La
dc.date.accessioned2023-06-20T16:51:34Z
dc.date.available2023-06-20T16:51:34Z
dc.date.issued1996
dc.description.abstractLet a polynomial function f of two real variables be given. We prove the existence of a finite number of unbounded regions of the real plane along which the tangent planes to the graph of f tend to horizontal position, when moving away from the origin. The real limit values of this function on these regions are called asymptotic values. We also define the real critical values at infinity of f and prove the theorem of local trivial fibration at infinity, away from these values.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipD.G.I.C.Y.T.
dc.description.sponsorshipC.I.C.Y.T.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15289
dc.identifier.doi10.1016/0022-4049(95)00025-9
dc.identifier.issn0022-4049
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0022404995000259
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57251
dc.issue.number3
dc.journal.titleJournal of Pure and Applied Algebra
dc.language.isoeng
dc.page.final273
dc.page.initial263
dc.publisherElsevier
dc.relation.projectIDPB 90/0044.
dc.relation.projectIDPB 89/0379-CO2-02.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordComplex-Variables
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleThe asymptotic values of a polynomial function on the real plane.
dc.typejournal article
dc.volume.number106
dcterms.referencesJ. Bochnak, M. Coste, M.F. Roy, Gtomdtrie algebrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band 12 (Springer, Berlin, 1987). N. Bourbaki, Elements of Mathematics, General Topology, part 1 (Addison-Wesley, Reading, Mass., 1966). A. Durfee, N. Kronenfeld, H. Munson, J. Roy, I. Westby, Counting critical points of real polynomials in two variables, Amer. Math. Mon. 100(3), (1993), 255-271. L. Fourrier, Entrelacs a l’infini et types topologiques des polynomes de deux variables complexes, These, University Paul Sabatier de Toulouse, 1993. H.V. Ha, Sur la fibration globale des polynbmes de deux variables complexes, C.R. Acad. Sci. Paris 309, serie I (1989) 231-234. H.V. Ha, Nombres de Lojasiewicz et singularitis a l’infini des polynbmes de deux variables complexes, C.R. Acad. Sci. Paris 311, serie I (1990) 429-432. H.V. Ha, D.T. Lt, Sur la topologie des polynomes complexes, Acta Math. Viet., 9(l) (1984) 21-32. H.V. Ha, L.A. Nguyen, Le comportement geomitrique a l’infini des polynbmes de deux variables complexes, C.R. Acad. Sci. Paris 309, serie I (1989) 183-186. S. Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994) 1-4. M. Shiota, Nash Manifolds, Lecture Notes in Mathematics, Vol. 1267, (Springer, Berlin, 1980).
dspace.entity.typePublication
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublication630e203d-3f7d-46d6-a43c-cb07da8c4b71
relation.isAuthorOfPublication.latestForDiscovery1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
14.pdf
Size:
782.22 KB
Format:
Adobe Portable Document Format

Collections