Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

E-Connectedness, Finite Approximations, Shape Theory and Coarse Graining in Hyperspaces

dc.contributor.authorAlonso Morón, Manuel
dc.contributor.authorCuchillo Ibáñez, Eduardo
dc.contributor.authorLuzón, Ana
dc.date.accessioned2023-06-20T10:33:30Z
dc.date.available2023-06-20T10:33:30Z
dc.date.issued2008
dc.description.abstractWe use upper semifinite hyperspaces of compacta to describe "-connectedness and to compute homology from finite approximations. We find another connection between "-connectedness and the so called Shape Theory. We construct a geodesically complete R-tree, by means of "-components at different resolutions, whose behavior at infinite captures the topological structure of the space of components of a given compact metric space. We also construct inverse sequences of finite spaces using internal finite approximations of compact metric spaces. These sequences can be converted into inverse sequences of polyhedra and simplicial maps by means of what we call the Alexandroff-McCord correspondence. This correspondence allows us to relate upper semifinite hyperspaces of finite approximation with the Vietoris-Rips complexes of such approximations at different resolutions. Two motivating examples are included in the introduction. We propose this procedure as a different mathematical foundation for problems on data analysis. This process is intrinsically related to the methodology of shape theory. Finally this paper reinforces Robins’s idea of using methods from shape theory to compute homology from finite approximations.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20312
dc.identifier.issn0167-2789
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0167278908002261
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50506
dc.issue.number23
dc.journal.titlePhysica D-Nonlinear Phenomena
dc.language.isospa
dc.page.final3122
dc.page.initial3109
dc.publisherElsevier
dc.relation.projectIDDGES grant MTM-2006-0825
dc.relation.projectIDDGES grant MAT 2005-05730-C02-02
dc.rights.accessRightsopen access
dc.subject.cdu515.12
dc.subject.keywordE-connectedness
dc.subject.keywordData analysis
dc.subject.keywordUpper semifinite hyperspaces
dc.subject.keywordAlexandroff-McCord correspondence
dc.subject.keywordVietoris-Rips complex
dc.subject.keywordShape theory
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleE-Connectedness, Finite Approximations, Shape Theory and Coarse Graining in Hyperspacesen
dc.typejournal article
dc.volume.number237
dspace.entity.typePublication
relation.isAuthorOfPublication95bd8189-3086-4e0f-94f6-06dee8c8f675
relation.isAuthorOfPublication.latestForDiscovery95bd8189-3086-4e0f-94f6-06dee8c8f675

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Alonso_Morón_e-connectedness.pdf
Size:
278.74 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
alonso36.pdf
Size:
4.2 MB
Format:
Adobe Portable Document Format

Collections