Phase-space distributions and the classical component of quantum observables
dc.contributor.author | Luis Aina, Alfredo | |
dc.date.accessioned | 2023-06-20T10:57:46Z | |
dc.date.available | 2023-06-20T10:57:46Z | |
dc.date.issued | 2003-06-20 | |
dc.description | ©2003 The American Physical Society. | |
dc.description.abstract | We analyze the relation between the classical part of quantum observables and the distributions representing quantum states and observables on the classical phase space. We determine in which conditions such a relation can be established, and the proper phase-space distribution required for this purpose. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/31437 | |
dc.identifier.doi | 10.1103/PhysRevA.67.064101 | |
dc.identifier.issn | 1050-2947 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevA.67.064101 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/51520 | |
dc.issue.number | 6 | |
dc.journal.title | Physical review A | |
dc.language.iso | eng | |
dc.page.final | 064101_3 | |
dc.page.initial | 064101_1 | |
dc.publisher | American Physical Society | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Noncommuting operators | |
dc.subject.keyword | Nonclassical states | |
dc.subject.keyword | Mechanics | |
dc.subject.keyword | Calculus | |
dc.subject.keyword | Theorem | |
dc.subject.keyword | Dynamics | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Phase-space distributions and the classical component of quantum observables | |
dc.type | journal article | |
dc.volume.number | 67 | |
dcterms.references | [1] C.T. Lee, Phys. Rev. A 44, R2775 (1991); N. Lütkenhaus and S.M. Barnett, ibid. 51, 3340 (1995); C.T. Lee, ibid. 52, 3374 (1995); A.F. de Lima and B. Baseia, ibid. 54, 4589 (1996); J. Janszky, M.G. Kim, and M.S. Kim, ibid. 53, 502 (1996). [2] M.J.W. Hall, Phys. Rev. A 64, 052103 (2001). [3] M.J.W. Hall, e-print quant-ph/0103072; e-print quant-ph/0107149. [4] M.J.W. Hall and M. Reginatto, J. Phys. A 35, 3289 (2002); e-print quant-ph/0201084. [5] N.C. Dias and J.N. Prata, Phys. Lett. A 291, 355 (2001). [6] G.S. Agarwal and E. Wolf, Phys. Lett. A 26, 485 (1968); Phys. Rev. Lett. 21, 180 (1968); G.S. Agarwal, Phys. Rev. 177, 400 (1969); K.E. Cahill and R.J. Glauber, ibid. 177, 1857 (1969); 177, 1882 (1969); G.S. Agarwal and E. Wolf, Phys. Rev. D 2, 2161 (1970); 2, 2187 (1970); 2, 2206 (1970); J. Peřina, Coherence of Light (Reidel, Dordrecht, 1985); L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). [7] L. Cohen, J. Math. Phys. 7, 781 (1966). [8] N.C. Dias and J.N. Prata, Phys. Lett. A 302, 261 (2002). [9] H. Margenau and R.N. Hill, Prog. Theor. Phys. 26, 722 (1961). [10] C.H. Page, J. Appl. Phys. 23, 103 (1952); R. Gase, T. Gase, and K. Blüthner, Opt. Lett. 20, 2045 (1995). [11] C.L. Mehta, J. Math. Phys. 5, 677 (1964). [12] M. Hillery, R.F. O’Connell, M.O. Scully, and E.P. Wigner, Phys. Rep. 106, 121 (1984). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 | |
relation.isAuthorOfPublication.latestForDiscovery | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 |
Download
Original bundle
1 - 1 of 1