Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

The non-parametric Parzen's window in stereo vision matching

dc.contributor.authorPajares Martínsanz, Gonzalo
dc.contributor.authorCruz García, Jesús Manuel de la
dc.date.accessioned2023-06-20T19:01:38Z
dc.date.available2023-06-20T19:01:38Z
dc.date.issued2002-04
dc.description© 2002 IEEE. The authors would like to thank the reviewers and Associate Editor for constructive recommendations.
dc.description.abstractThis paper presents an approach to the local stereovision matching problem using edge segments as features with four attributes. From these attributes we compute a matching probability between pairs of features of the stereo images. A correspondence is said true when such a probability is maximum. We introduce a nonparametric strategy based on Parzen's window to estimate a probability density function (PDF) which is used to obtain the matching probability. This is the main finding of the paper. A comparative analysis of other recent matching methods is included to show that this finding can be justified theoretically. A generalization of the proposed method is made in order to give guidelines about its use with the similarity constraint and also in different environments where other features and attributes are more suitable.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26315
dc.identifier.doi10.1109/3477.990879
dc.identifier.issn1083-4419
dc.identifier.officialurlhttp://dx.doi.org/10.1109/3477.990879
dc.identifier.relatedurlhttp://ieeexplore.ieee.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59128
dc.issue.number2
dc.journal.titleIEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics
dc.language.isoeng
dc.page.final230
dc.page.initial225
dc.publisherElectronics Engineers Inc
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordClassifiers
dc.subject.keywordAlgorithm
dc.subject.keywordNetwork
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleThe non-parametric Parzen's window in stereo vision matching
dc.typejournal article
dc.volume.number32
dcterms.references[1] S. H. Lee and J. J. Leou, “A dynamic programming approach to line segment matching in stereo vision,” Pattern Recognit., vol. 27, pp. 961–986,1994. [2] D. Marr and T. Poggio, “A computational theory of human stereovision,”Proc. R. Soc. London B, vol. 207, pp. 301–328, 1979. [3] G. Medioni and R. Nevatia, “Segment based stereo matching,” Comput. Vis., Graph., Image Process., vol. 31, pp. 2–18, 1985. [4] S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby, “PMF: A stereo correspondence algorithm using a disparity gradient limit,” Perception, vol. 14, pp. 449–470, 1981. [5] J. M. Cruz, G. Pajares, and J. Aranda, “A neural network approach to the stereovision correspondence problem by unsupervised learning,” Neural Networks, vol. 8, no. 5, pp. 805–813, 1995. [6] G. Pajares, J. M. Cruz, and J. Aranda, “Relaxation by Hopfield network in stereo image matching,” Pattern Recognit., vol. 31, no. 5, pp. 561–574, 1998. [7] G. Pajares, J. M. Cruz, and J. A. López-Orozco, “Improving stereovision matching trough supervised learning,” Pattern Anal. Applicat., vol. 1, pp. 105–120, 1998. [8] , “Stereo matching using Hebbian learning,” IEEE Trans. Syst., Man, Cybern. B, vol. 29, pp. 553–559, Aug. 1999. [9] G. Q. Wei, W. Brauer, and G. Hirzinger, “Intensity- and gradient-based stereo matching using hierarchical Gaussian basis functions,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, pp. 1143–1160, Nov. 1998. [10] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision. Upper Saddle River, NJ: Prentice-Hall, 1998. [11] A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian–Gaussian masks,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 5, pp. 651–664, 1986. [12] J. G. Leu and H. L. Yau, “Detecting the dislocations in metal crystals from microscopic images,” Pattern Recognit., vol. 24, no. 1, pp. 41–56, 1991. [13] M. S. Lew, T. S. Huang, and K. Wong, “Learning and feature selection in stereo matching,” IEEE Trans. Pattern Anal. Machine Intell., vol. 16, pp. 869–881, Sept. 1994. [14] E. P. Krotkov, Active Computer Vision by Cooperative Focus and Stereo. Berlin, Germany: Springer-Verlag, 1989. [15] S. Tanaka and A. C. Kak, “A rule-based approach to binocular stereopsis,” in Analysis and Interpretation of Range Images, R. C. Jain and A. K. Jain, Eds. Berlin, Germany: Springer-Verlag, 1990. [16] R. Nevatia and K. R. Babu, “Linear feature extraction and description,” Comput. Vis., Graph., Image Process., vol. 13, pp. 257–269, 1980. [17] R. L. Coultrip and R. H. Granger, “Sparse random networks with LTP learning rules approximate Bayes classifiers via Parzen’s method,” Neural Networks, vol. 7, no. 3, pp. 463–476, 1994. [18] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York: Wiley, 1973. [19] E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Statist., vol. 33, pp. 1065–1076, 1962. [20] A. K. Jain and M. D. Ramaswami, “Classifier design with Parzen windows,” in Pattern Recognition and Artificial Intelligence Toward an Integration, E. S. Gelsema and L. N. Kanal, Eds. Amsterdam, The Netherlands: Elsevier, 1988, pp. 211–218. [21] K. Fukunaga and D. M. Hummels, “Bayes error estimation using Parzen and K–NN procedures,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, no. 5, pp. 634–643, 1987. [22] L. F. Escudero, Reconocimiento de Patrones.Madrid, Spain: Paraninfo, 1977. [23] R. P. W. Duin, “On the choice of smoothing parameters for Parzen estimators of probability density functions,” IEEE Trans. Comput., vol. C-25, pp. 1175–1179, 1976. [24] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, pp. 226–239, Mar. 1998. [25] Z. Zhang and R. S. Blum, “A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application,” Proc. IEEE, vol. 87, pp. 1315–1325, Aug. 1999. [26] Y. S. Kim, J. J. Lee, and Y. H. Ha, “Stereo matching algorithm based on modified wavelet decomposition process,” Pattern Recognit., vol. 30, no. 6, pp. 929–952, 1997. [27] C. Baillard and O. Dissard, “A stereo matching algorithm for urban digital elevation models,” Photogramm. Eng. Remote Sens., vol. 66, no. 9, pp. 1119–1128, 2000.
dspace.entity.typePublication
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublication.latestForDiscovery878e090e-a59f-4f17-b5a2-7746bed14484

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cruagarcia50.pdf
Size:
270.65 KB
Format:
Adobe Portable Document Format

Collections