Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Predictability of the community-function landscape in wine yeast ecosystems

dc.contributor.authorRuiz Ruiz, Javier
dc.contributor.authorDe Celis Rodríguez, Miguel
dc.contributor.authorDiaz-Colunga, Juan
dc.contributor.authorVila, Jean
dc.contributor.authorBenitez-Dominguez, Belén
dc.contributor.authorVicente, Javier
dc.contributor.authorSantos de la Sen, Antonio
dc.contributor.authorSánchez, Alvaro
dc.contributor.authorBelda Aguilar, Ignacio
dc.date.accessioned2024-01-26T19:59:42Z
dc.date.available2024-01-26T19:59:42Z
dc.date.issued2023
dc.descriptionThis work has been supported by grant PID2019‐105834GA‐I00 (acronym Wineteractions) funded by the Spanish State Research Agency/Science and Research Ministry (https://doi.org/10.13039/501100011033). Javier Ruiz acknowledges the Spanish State Research Agency/Science and Research Ministry for his postdoctoral contract Juan de la Cierva‐formación 2021 (FJC2021‐046516‐I). Alvaro Sanchez was Funded/Co‐Funded by the European Union (ERC, ECOPROSPECTOR‐101088469)
dc.description.abstractPredictively linking taxonomic composition and quantitative ecosystem functions is a major aspiration in microbial ecology, which must be resolved if we wish to engineer microbial consortia. Here, we have addressed this open question for an ecological function of major biotechnological relevance: alcoholic fermentation in wine yeast communities. By exhaustively phenotyping an extensive collection of naturally occurring wine yeast strains, we find that most ecologically and industrially relevant traits exhibit phylogenetic signal, allowing functional traits in wine yeast communities to be predicted from taxonomy. Furthermore, we demonstrate that the quantitative contributions of individual wine yeast strains to the function of complex communities followed simple quantitative rules. These regularities can be integrated to quantitatively predict the function of newly assembled consortia. Besides addressing theoretical questions in functional ecology, our results and methodologies can provide a blueprint for rationally managing microbial processes of biotechnological relevance.
dc.description.departmentDepto. de Genética, Fisiología y Microbiología
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.identifier.citationRuiz, J., de Celis, M., Diaz-Colunga, J., Vila, J.C.C., Benitez-Dominguez, B., Vicente, J., Santos, A., Sanchez, A., Belda, I. (2023). Predictability of the community-function landscape in wine yeast ecosystems. Molecular Systems Biology. 19: e11613.
dc.identifier.doi10.15252/msb.202311613
dc.identifier.issn1744-4292
dc.identifier.officialurlhttps://doi.org/10.15252/msb.202311613
dc.identifier.relatedurlhttps://github.com/Javier-R-Ruiz/Predicting-wine-yeast-ecosystem-function
dc.identifier.urihttps://hdl.handle.net/20.500.14352/95673
dc.issue.numbere11613
dc.journal.titleMolecular Systems Biology
dc.language.isoeng
dc.publisherEMBOpress
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu579
dc.subject.cdu577.2
dc.subject.keywordCommunity-function landscape
dc.subject.keywordFunctional effect equations
dc.subject.keywordMicrobial interactions
dc.subject.keywordPhylogenetic signal
dc.subject.keywordWine yeasts
dc.subject.ucmMicrobiología (Biología)
dc.subject.ucmEcología (Biología)
dc.subject.unesco3309.90 Microbiología de Alimentos
dc.subject.unesco2415 Biología Molecular
dc.titlePredictability of the community-function landscape in wine yeast ecosystems
dc.title.alternativePredecir la previsibilidad del la función de comunidades en los ecosistemas de levaduras del vino
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number19
dspace.entity.typePublication
relation.isAuthorOfPublication89babf4d-1f4b-458d-8349-94f3c0725a23
relation.isAuthorOfPublication2b5f69d3-37dd-493b-ac51-fd2137f913c4
relation.isAuthorOfPublication2388c3c0-431f-4f3f-9652-b266505fb66d
relation.isAuthorOfPublicationc83a313c-c648-45d5-884d-d6c49e8e72d7
relation.isAuthorOfPublication.latestForDiscovery2b5f69d3-37dd-493b-ac51-fd2137f913c4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Predictability_of_the_community-function_landscape.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format

Collections