Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Lissajous figure-based single-frame collimation technique

dc.contributor.authorTorcal Milla, Francisco José
dc.contributor.authorSánchez Brea, Luis Miguel
dc.contributor.authorHerrera Fernández, José María
dc.date.accessioned2023-06-18T06:49:35Z
dc.date.available2023-06-18T06:49:35Z
dc.date.issued2015-09-01
dc.description© 2015 Elsevier B.V. This work has been supported by the Ministry of Science and Innovation of Spain (project DPI2011-27851).
dc.description.abstractAn accurate collimation technique based on a double grating system is proposed. Transversal displacement of the grating is not required and then, automatic single-frame processing can be performed. Talbot self-images are projected onto a mask composed by several shifted diffraction gratings. A Lissajous figure is obtained with the signals acquired by a CMOS camera where the mask is simulated by software. The collimation degree is determined by measuring the ellipticity of the Lissajous figure. Visual or automatic procedures for simple and accurate collimation of a light source are proposed. Experimental results are obtained which show a resolution of δϕ ≈ 4.16 μrad in the divergence of the beam when a lens with focal length f = 25 mm and diameter D = 20 mm is used for collimation.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35452
dc.identifier.doi10.1016/j.sna.2015.07.004
dc.identifier.issn0924-4247
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.sna.2015.07.004
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24321
dc.journal.titleSensors and actuators A: Physical
dc.language.isoeng
dc.page.final266
dc.page.initial259
dc.publisherElsevier
dc.relation.projectIDDPI2011-27851
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordLaser-beam collimation
dc.subject.keywordTalbot interferometry
dc.subject.keywordSystem
dc.subject.keywordPlate
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleLissajous figure-based single-frame collimation technique
dc.typejournal article
dc.volume.number233
dcterms.references[1] M. Murty, The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source, Appl. Opt. 3 (4) (1964) 531–534. [2] A. Ganesan, P. Venkateswarlu, Laser beam collimation using talbot interferometry, Appl. Opt. 32 (16) (1993) 2918–2920. [3] D. Silva, A simple interferometric method of beam collimation, Appl. Opt. 10 (1971), 1980 1-1982. [4] J. Choi, G.M. Perera, M. Aggarwal, R. Shukla, M. Mantravadi, Wedge-plate shearing interferometers for collimation testing: use of a moiré technique, Appl. Opt. 34 (19) (1995) 3628–3638. [5] J. Darlin, M. Kothiyal, R. Sirohi, A phase-conjugate twyman-green interferometer with increased sensitivity for laser beam collimation, J. Mod. Opt. 45 (11) (1998) 2371–2378. [6] D. Joyeux, Y. Cohen-Sabban, High magnification self-imaging, Appl. Opt. 21 (4) (1982) 625–627. [7] P. Senthilkumaran, Optical phase singularities in detection of laser beam collimation, Appl. Opt. 42 (31) (2003) 6314–6320. [8] S. Yokozeki, K. Patorski, K. Ohnishi, Collimation method using fourier imaging and moiré techniques, Opt. Commun. 14 (4) (1975) 401–405. [9] S. Haramaki, S. Yokozeki, A. Hayashi, H. Suzuki, Automatic collimation system by talbot interferometry, in: in: Optical Engineering for Sensing and Nanotechnology (ICOSN’01), International Society for Optics and Photonics, 2001, pp. 388–391. [10] L.M. Sanchez-Brea, F.J. Torcal-Milla, F.J. Salgado-Remacha, T. Morlanes, I. Jimenez-Castillo, E. Bernabeu, Collimation method using a double grating system, Appl. Opt. 49 (17) (2010) 3363–3368. [11] K. Patorski, K. Pokorski, M. Trusiak, Circular-linear grating talbot interferometry with moiré fresnel imaging for beam collimation, Opt. Lett. 39 (2) (2014) 291–294. [12] L.M. Sanchez-Brea, F.J. Torcal-Milla, J.M. Herrera-Fernandez, T. Morlanes, E. Bernabeu, Self-imaging technique for beam collimation, Opt. Lett. 39 (19) (2014) 5764–5767. [13] J. Dhanotia, S. Prakash, Automated collimation testing by incorporating the fourier transform method in talbot interferometry, Appl. Opt. 50 (10) (2011) 1446–1452. [14] R. Disawal, J. Dhanotia, S. Prakash, Improved measurement characteristics in collimation testing using lau interferometry and Fourier fringe analysis technique, Precis. Eng. 38 (4) (2014) 948–955. [15] W.-Y. Chang,K.Y. Hsu,K.-H. Chen,J.-H. Chen, Collimation testing and calibration using a heterodyne moiré method, Opt. Lasers Eng. 62 (2014) 126–131. [16] E. Keren, O. Kafri, Diffraction effects in moiré deflectometry, J. Opt. Soc. Am. A 2 (2) (1985) 111–120. [17] M.F. Guasti, M.D.L.C. Heredia, Diffraction pattern of a circle/square aperture, J. Mod. Opt. 40 (6) (1993) 1073–1080. [18] F. Shen, A. Wang, Fast-Fourier-transform based numerical integration method for the rayleigh–sommerfeld diffraction formula, Appl. Opt. 45 (6) (2006) 1102–1110. [19] J. de Vicente, A. Sánchez-Perez, M. Berzal, P. Maresca, E. Gómez, Uncertainty in ellipse fitting using a flatbed scanner: development and experimental verification, Meas. Sci. Technol. 25 (1) (2014) 015005. [20] JCGM, Evaluation of measurement data; guide to the expression of uncertainty in measurement(2008). URL http://www.bipm.org/utils/common/documents/ jcgm/JCGM 100 2008 E.pdf.
dspace.entity.typePublication
relation.isAuthorOfPublication72f8db7f-8a25-4d15-9162-486b0f884481
relation.isAuthorOfPublication.latestForDiscovery72f8db7f-8a25-4d15-9162-486b0f884481

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SBreaPostprint_01_09_17.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format

Collections