Lissajous figure-based single-frame collimation technique
dc.contributor.author | Torcal Milla, Francisco José | |
dc.contributor.author | Sánchez Brea, Luis Miguel | |
dc.contributor.author | Herrera Fernández, José María | |
dc.date.accessioned | 2023-06-18T06:49:35Z | |
dc.date.available | 2023-06-18T06:49:35Z | |
dc.date.issued | 2015-09-01 | |
dc.description | © 2015 Elsevier B.V. This work has been supported by the Ministry of Science and Innovation of Spain (project DPI2011-27851). | |
dc.description.abstract | An accurate collimation technique based on a double grating system is proposed. Transversal displacement of the grating is not required and then, automatic single-frame processing can be performed. Talbot self-images are projected onto a mask composed by several shifted diffraction gratings. A Lissajous figure is obtained with the signals acquired by a CMOS camera where the mask is simulated by software. The collimation degree is determined by measuring the ellipticity of the Lissajous figure. Visual or automatic procedures for simple and accurate collimation of a light source are proposed. Experimental results are obtained which show a resolution of δϕ ≈ 4.16 μrad in the divergence of the beam when a lens with focal length f = 25 mm and diameter D = 20 mm is used for collimation. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN), España | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/35452 | |
dc.identifier.doi | 10.1016/j.sna.2015.07.004 | |
dc.identifier.issn | 0924-4247 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.sna.2015.07.004 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24321 | |
dc.journal.title | Sensors and actuators A: Physical | |
dc.language.iso | eng | |
dc.page.final | 266 | |
dc.page.initial | 259 | |
dc.publisher | Elsevier | |
dc.relation.projectID | DPI2011-27851 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Laser-beam collimation | |
dc.subject.keyword | Talbot interferometry | |
dc.subject.keyword | System | |
dc.subject.keyword | Plate | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Lissajous figure-based single-frame collimation technique | |
dc.type | journal article | |
dc.volume.number | 233 | |
dcterms.references | [1] M. Murty, The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser source, Appl. Opt. 3 (4) (1964) 531–534. [2] A. Ganesan, P. Venkateswarlu, Laser beam collimation using talbot interferometry, Appl. Opt. 32 (16) (1993) 2918–2920. [3] D. Silva, A simple interferometric method of beam collimation, Appl. Opt. 10 (1971), 1980 1-1982. [4] J. Choi, G.M. Perera, M. Aggarwal, R. Shukla, M. Mantravadi, Wedge-plate shearing interferometers for collimation testing: use of a moiré technique, Appl. Opt. 34 (19) (1995) 3628–3638. [5] J. Darlin, M. Kothiyal, R. Sirohi, A phase-conjugate twyman-green interferometer with increased sensitivity for laser beam collimation, J. Mod. Opt. 45 (11) (1998) 2371–2378. [6] D. Joyeux, Y. Cohen-Sabban, High magnification self-imaging, Appl. Opt. 21 (4) (1982) 625–627. [7] P. Senthilkumaran, Optical phase singularities in detection of laser beam collimation, Appl. Opt. 42 (31) (2003) 6314–6320. [8] S. Yokozeki, K. Patorski, K. Ohnishi, Collimation method using fourier imaging and moiré techniques, Opt. Commun. 14 (4) (1975) 401–405. [9] S. Haramaki, S. Yokozeki, A. Hayashi, H. Suzuki, Automatic collimation system by talbot interferometry, in: in: Optical Engineering for Sensing and Nanotechnology (ICOSN’01), International Society for Optics and Photonics, 2001, pp. 388–391. [10] L.M. Sanchez-Brea, F.J. Torcal-Milla, F.J. Salgado-Remacha, T. Morlanes, I. Jimenez-Castillo, E. Bernabeu, Collimation method using a double grating system, Appl. Opt. 49 (17) (2010) 3363–3368. [11] K. Patorski, K. Pokorski, M. Trusiak, Circular-linear grating talbot interferometry with moiré fresnel imaging for beam collimation, Opt. Lett. 39 (2) (2014) 291–294. [12] L.M. Sanchez-Brea, F.J. Torcal-Milla, J.M. Herrera-Fernandez, T. Morlanes, E. Bernabeu, Self-imaging technique for beam collimation, Opt. Lett. 39 (19) (2014) 5764–5767. [13] J. Dhanotia, S. Prakash, Automated collimation testing by incorporating the fourier transform method in talbot interferometry, Appl. Opt. 50 (10) (2011) 1446–1452. [14] R. Disawal, J. Dhanotia, S. Prakash, Improved measurement characteristics in collimation testing using lau interferometry and Fourier fringe analysis technique, Precis. Eng. 38 (4) (2014) 948–955. [15] W.-Y. Chang,K.Y. Hsu,K.-H. Chen,J.-H. Chen, Collimation testing and calibration using a heterodyne moiré method, Opt. Lasers Eng. 62 (2014) 126–131. [16] E. Keren, O. Kafri, Diffraction effects in moiré deflectometry, J. Opt. Soc. Am. A 2 (2) (1985) 111–120. [17] M.F. Guasti, M.D.L.C. Heredia, Diffraction pattern of a circle/square aperture, J. Mod. Opt. 40 (6) (1993) 1073–1080. [18] F. Shen, A. Wang, Fast-Fourier-transform based numerical integration method for the rayleigh–sommerfeld diffraction formula, Appl. Opt. 45 (6) (2006) 1102–1110. [19] J. de Vicente, A. Sánchez-Perez, M. Berzal, P. Maresca, E. Gómez, Uncertainty in ellipse fitting using a flatbed scanner: development and experimental verification, Meas. Sci. Technol. 25 (1) (2014) 015005. [20] JCGM, Evaluation of measurement data; guide to the expression of uncertainty in measurement(2008). URL http://www.bipm.org/utils/common/documents/ jcgm/JCGM 100 2008 E.pdf. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 72f8db7f-8a25-4d15-9162-486b0f884481 | |
relation.isAuthorOfPublication.latestForDiscovery | 72f8db7f-8a25-4d15-9162-486b0f884481 |
Download
Original bundle
1 - 1 of 1